Python標準庫爲咱們提供了threading和multiprocessing模塊編寫相應的多線程/多進程代碼,可是當項目達到必定的規模,頻繁建立/銷燬進程或者線程是很是消耗資源的,這個時候咱們就要編寫本身的線程池/進程池,以空間換時間。但從Python3.2開始,標準庫爲咱們提供了concurrent.futures
模塊,它提供了ThreadPoolExecutor和ProcessPoolExecutor兩個類,實現了對threading和multiprocessing的進一步抽象,對編寫線程池/進程池提供了直接的支持。html
concurrent.futures模塊的基礎是Exectuor
,Executor是一個抽象類,它不能被直接使用。可是它提供的兩個子類ThreadPoolExecutor
和ProcessPoolExecutor
倒是很是有用,顧名思義二者分別被用來建立線程池和進程池的代碼。咱們能夠將相應的tasks直接放入線程池/進程池,不須要維護Queue來操心死鎖的問題,線程池/進程池會自動幫咱們調度。java
Future
這個概念相信有java和nodejs下編程經驗的朋友確定不陌生了,你能夠把它理解爲一個在將來完成的操做
,這是異步編程的基礎,傳統編程模式下好比咱們操做queue.get的時候,在等待返回結果以前會產生阻塞,cpu不能讓出來作其餘事情,而Future的引入幫助咱們在等待的這段時間能夠完成其餘的操做。關於在Python中進行異步IO能夠閱讀完本文以後參考個人Python併發編程之協程/異步IO。node
p.s: 若是你依然在堅守Python2.x,請先安裝futures模塊。python
pip install futures
咱們先經過下面這段代碼來了解一下線程池的概念git
# example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 建立一個最大可容納2個task的線程池 future1 = pool.submit(return_future_result, ("hello")) # 往線程池裏面加入一個task future2 = pool.submit(return_future_result, ("world")) # 往線程池裏面加入一個task print(future1.done()) # 判斷task1是否結束 time.sleep(3) print(future2.done()) # 判斷task2是否結束 print(future1.result()) # 查看task1返回的結果 print(future2.result()) # 查看task2返回的結果
咱們根據運行結果來分析一下。咱們使用submit
方法來往線程池中加入一個task,submit返回一個Future對象
,對於Future對象能夠簡單地理解爲一個在將來完成的操做。在第一個print語句中很明顯由於time.sleep(2)的緣由咱們的future1沒有完成,由於咱們使用time.sleep(3)暫停了主線程,因此到第二個print語句的時候咱們線程池裏的任務都已經所有結束。github
ziwenxie :: ~ » python example1.py False True hello world # 在上述程序執行的過程當中,經過ps命令咱們能夠看到三個線程同時在後臺運行 ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py
上面的代碼咱們也能夠改寫爲進程池形式,api和線程池一模一樣,我就不羅嗦了。編程
# example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result())
下面是運行結果api
ziwenxie :: ~ » python example2.py False True hello world ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
除了submit,Exectuor還爲咱們提供了map
方法,和內建的map用法相似,下面咱們經過兩個例子來比較一下二者的區別。bash
# example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(load_url, url, 60): url for url in URLS} for future in concurrent.futures.as_completed(future_to_url): url = future_to_url[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) else: print('%r page is %d bytes' % (url, len(data)))
從運行結果能夠看出,as_completed不是按照URLS列表元素的順序返回的
。多線程
ziwenxie :: ~ » python example3.py 'http://example.com/' page is 1270 byte 'https://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytes
# example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url): with urllib.request.urlopen(url, timeout=60) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: for url, data in zip(URLS, executor.map(load_url, URLS)): print('%r page is %d bytes' % (url, len(data)))
從運行結果能夠看出,map是按照URLS列表元素的順序返回的
,而且寫出的代碼更加簡潔直觀,咱們能夠根據具體的需求任選一種。
ziwenxie :: ~ » python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'https://api.github.com/' page is 2039 bytes
wait方法接會返回一個tuple(元組),tuple中包含兩個set(集合),一個是completed(已完成的)另一個是uncompleted(未完成的)。使用wait方法的一個優點就是得到更大的自由度,它接收三個參數FIRST_COMPLETED
, FIRST_EXCEPTION
和ALL_COMPLETE
,默認設置爲ALL_COMPLETED。
咱們經過下面這個例子來看一下三個參數的區別
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
若是採用默認的ALL_COMPLETED,程序會阻塞直到線程池裏面的全部任務都完成
。
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f0b06c9bc88 state=finished returned str>, <Future at 0x7f0b06cbaa90 state=finished returned str>, <Future at 0x7f0b06373898 state=finished returned str>, <Future at 0x7f0b06352ba8 state=finished returned str>, <Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())
若是採用FIRST_COMPLETED參數,程序並不會等到線程池裏面全部的任務都完成
。
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f84109edb00 state=finished returned str>, <Future at 0x7f840e2e9320 state=finished returned str>, <Future at 0x7f840f25ccc0 state=finished returned str>}, not_done={<Future at 0x7f840e2e9ba8 state=running>, <Future at 0x7f840e2e9940 state=running>})
DOCUMENTATION OF CONCURRENT-FUTURES
GitHub: https://github.com/ziwenxie
Blog: https://www.ziwenxie.site
本文爲做者原創,轉載請聲明博客出處:)