JavaShuo
欄目
標籤
INCREMENTAL NETWORK QUANTIZATION: TOWARDS LOSSLESS CNNS WITH LOW-PRECISION WEIGHTS
時間 2020-12-30
欄目
系統網絡
简体版
原文
原文鏈接
在量化方面已經有很多工作了,其中一個是用每個FC層的浮點的聚類中心值來代替所有權重值,可以獲得20X的壓縮率,以及在top-上1%的精度損失;hash網則將所有權重放入哈希桶內,且所有共享哈希桶的權重共享一個單精度值。但它只考慮了幾種淺層網絡的FC層;還有人提出了將剪枝、量化和霍夫曼編碼結合的方法;還有人使用16位精度的權重來代替32位精度的權重來訓練網絡;之後還有EBP,它在推斷的前向傳播過程中
>>阅读原文<<
相關文章
1.
Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights論文
2.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
3.
INQ(incremental network quantization:towards lossless CNNs with low-precision weights
4.
神經網絡壓縮(8)Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights
5.
【論文閱讀筆記】Incremental Network Quantizatio:Towards Lossless CNNs with Low-Precision Weights
6.
增量量化網絡:towards lossless CNNs with low-precision weights
7.
論文總結:Incremental Network Quantization
8.
Ternary Neural Networks with Fine-Grained Quantization
9.
Quantization Mimic: Towards Very Tiny CNN for Object Detection
10.
【論文閱讀筆記】Deep Neural Network Compression with Single and Multiple Level Quantization
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
SQLite Vacuum
-
SQLite教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
算法總結-股票買賣
相關標籤/搜索
incremental
lossless
quantization
cnns
weights
yolov4.weights
with+this
with...connect
with...as
by...with
系統網絡
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights論文
2.
INQ 論文解讀:Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
3.
INQ(incremental network quantization:towards lossless CNNs with low-precision weights
4.
神經網絡壓縮(8)Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights
5.
【論文閱讀筆記】Incremental Network Quantizatio:Towards Lossless CNNs with Low-Precision Weights
6.
增量量化網絡:towards lossless CNNs with low-precision weights
7.
論文總結:Incremental Network Quantization
8.
Ternary Neural Networks with Fine-Grained Quantization
9.
Quantization Mimic: Towards Very Tiny CNN for Object Detection
10.
【論文閱讀筆記】Deep Neural Network Compression with Single and Multiple Level Quantization
>>更多相關文章<<