For this question, your program is required to process an input string containing only ASCII characters between ‘0’ and ‘9’, or between ‘a’ and ‘z’ (including ‘0’, ‘9’, ‘a’, ‘z’).算法
Your program should reorder and split all input string characters into multiple segments, and output all segments as one concatenated string. The following requirements should also be met,
1. Characters in each segment should be in strictly increasing order. For ordering, ‘9’ is larger than ‘0’, ‘a’ is larger than ‘9’, and ‘z’ is larger than ‘a’ (basically following ASCII character order).
2. Characters in the second segment must be the same as or a subset of the first segment; and every following segment must be the same as or a subset of its previous segment.編程
Your program should output string 「<invalid input string>」 when the input contains any invalid characters (i.e., outside the '0'-'9' and 'a'-'z' range).app
Input consists of multiple cases, one case per line. Each case is one string consisting of ASCII characters.ide
For each case, print exactly one line with the reordered string based on the criteria above.學習
aabbccdd 007799aabbccddeeff113355zz 1234.89898 abcdefabcdefabcdefaaaaaaaaaaaaaabbbbbbbddddddee
abcdabcd 013579abcdefz013579abcdefz <invalid input string> abcdefabcdefabcdefabdeabdeabdabdabdabdabaaaaaaa
答案:C#
using System; class Program { static bool IsValid(string str) { bool result = true; for (int i = 0; i < str.Length; i++) { if ((str[i] >= '0' && str[i] <= '9') || (str[i] >= 'a' && str[i] <= 'z')) { } else { result = false; break; } } return result; } static string StringRecorder(string str) { if (IsValid(str)) { int[] bitmap = new int[36]; char[] strbuf = new char[str.Length]; int index = 0; int i; for (i = 0; i < 36; i++) { bitmap[i] = 0; } for (i = 0; i < str.Length; i++) { char c = str[i]; if (c >= '0' && c <= '9') { bitmap[(int)(c - '0')] += 1; } else { bitmap[(int)(c - 'a'+10)] += 1; } } while (index < str.Length) { for (i = 0; i < 36; i++) { if (bitmap[i] > 0) { bitmap[i] -= 1; strbuf[index] = i <= 9 ? (char)('0' + i) :(char)( 'a' + i - 10); index += 1; } } } return new String(strbuf); } else { return "<invalid input string>"; } } static void Main(string[] args) { string line; while ((line = Console.ReadLine()) != null) { Console.WriteLine(StringRecorder(line)); } } }
Consider a string set that each of them consists of {0, 1} only. All strings in the set have the same number of 0s and 1s. Write a program to find and output the K-th string according to the dictionary order. If such a string doesn’t exist, or the input is not valid, please output 「Impossible」. For example, if we have two ‘0’s and two ‘1’s, we will have a set with 6 different strings, {0011, 0101, 0110, 1001, 1010, 1100}, and the 4th string is 1001.ui
The first line of the input file contains a single integer t (1 ≤ t ≤ 10000), the number of test cases, followed by the input data for each test case.
Each test case is 3 integers separated by blank space: N, M(2 <= N + M <= 33 and N , M >= 0), K(1 <= K <= 1000000000). N stands for the number of ‘0’s, M stands for the number of ‘1’s, and K stands for the K-th of string in the set that needs to be printed as output.this
For each case, print exactly one line. If the string exists, please print it, otherwise print 「Impossible」.spa
3 2 2 2 2 2 7 4 7 47
0101 Impossible 01010111011
答案:C語言
#include <stdio.h> #include <memory.h> #define S 100 int n1,n0,kCount,answer[100]; int kth=0; int k=0; int found = 0; void Dfs(int m,int n,int offset) { int i; int j; if(found == 1)return; if(m==0) { for(i=n0+n1;i>n0+n1-n;i--) answer[i] = 1; k++; if(k==kth) { found = 1; for(i=1;i<=n1+n0;i++) printf("%d",answer[i]); printf("\n"); } } else if(n==0) { for(i=n0+n1;i>n0+n1-m;i--) answer[i] = 0; k++; if(k==kth) { found = 1; for(i=1;i<=n1+n0;i++) printf("%d",answer[i]); printf("\n"); } } else { for(i=m;i>=0;i--) { for(j=i;j>0;j--) answer[offset+j] = 0; answer[offset+i+1] = 1; Dfs(m-i,n-1,offset+i+1); } } } int main() { int t; int i; scanf("%d",&t); for(i=0;i<t;i++) { scanf("%d %d %d",&n1,&n0,&kth); memset(answer,0,sizeof(answer)); found=0; k=0; Dfs(n1,n0,0); if(found==0) { printf("Impossible\n"); } } return 0; }
Find a pair in an integer array that swapping them would maximally decrease the inversion count of the array. If such a pair exists, return the new inversion count; otherwise returns the original inversion count.code
Definition of Inversion: Let (A[0], A[1] ... A[n], n <= 50) be a sequence of n numbers. If i < j and A[i] > A[j], then the pair (i, j) is called inversion of A.orm
Example:
Count(Inversion({3, 1, 2})) = Count({3, 1}, {3, 2}) = 2
InversionCountOfSwap({3, 1, 2})=>
{
InversionCount({1, 3, 2}) = 1 <-- swapping 1 with 3, decreases inversion count by 1
InversionCount({2, 1, 3}) = 1 <-- swapping 2 with 3, decreases inversion count by 1
InversionCount({3, 2, 1}) = 3 <-- swapping 1 with 2 , increases inversion count by 1
}
Input consists of multiple cases, one case per line.Each case consists of a sequence of integers separated by comma.
For each case, print exactly one line with the new inversion count or the original inversion count if it cannot be reduced.
3,1,2 1,2,3,4,5
1 0
using System; class Program { static int mergeSort(int[] arr, int array_size) { int[] temp = new int[array_size]; return _mergeSort(arr, temp, 0, array_size - 1); } static int _mergeSort(int[] arr, int[] temp, int left, int right) { int mid, inv_count = 0; if (right > left) { mid = (right + left)/2; inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid+1, right); inv_count += merge(arr, temp, left, mid+1, right); } return inv_count; } static int merge(int[] arr, int[] temp, int left, int mid, int right) { int i, j, k; int inv_count = 0; i = left; j = mid; k = left; while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } while (i <= mid - 1) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (i=left; i <= right; i++) arr[i] = temp[i]; return inv_count; } static void Swap(int[] arr, int i, int j) { int t = arr[i]; arr[i] = arr[j]; arr[j] = t; } static void Copy(int[] arr, int n, int[] dst) { int i; for (i = 0; i < n; i++) { dst[i] = arr[i]; } } static int ReduceInvCount(int[] arr, int n) { int i, j; int min = 0; int count = 0; int[] buf = new int[n]; Copy(arr, n, buf); min = mergeSort(buf, n); for (i = 0; i < n - 1; i++) { for (j = i + 1; j < n; j++) { Swap(arr, i, j); Copy(arr, n, buf); count = mergeSort(buf, n); Swap(arr, i, j); if (count < min) min = count; } } return min; } static void Main(string[] args) { string line; while ((line = Console.ReadLine()) != null) { if (line == "") { break; } else { string[] token = line.Split(','); int[] arr = new int[token.Length]; for (int i = 0; i < token.Length; i++) { arr[i] = int.Parse(token[i]); } Console.WriteLine(ReduceInvCount(arr, arr.Length)); } } } }
In a running system, there are many logs produced within a short period of time, we'd like to know the count of the most frequent logs.
Logs are produced by a few non-empty format strings, the number of logs is N(1<=N<=20000), the maximum length of each log is 256.
Here we consider a log same with another when their edit distance (see note) is <= 5.
Also we have a) logs are all the same with each other produced by a certain format string b) format strings have edit distance 5 of each other.
Your program will be dealing with lots of logs, so please try to keep the time cost close to O(nl), where n is the number of logs, and l is the average log length.
Note edit distance is the minimum number of operations (insertdeletereplace a character) required to transform one string into the other, please refer to
http://en.wikipedia.org/wiki/Edit_distance for more details.
Multiple lines of non-empty strings.
The count of the most frequent logs.
Logging started for id:1 Module ABC has completed its job Module XYZ has completed its job Logging started for id:10 Module ? has completed its job
3
答案:沒作出來T_T
得分 | 題目 | 結果 | 語言 | 時間 | 內存 | 提交時間 | 操做 |
50 / 100 | Most Frequent Logs | TLE | C# | 20865ms | 21MB | 1小時前 | 查看 |
50 / 100 | Most Frequent Logs | WA | C# | 274ms | 15MB | 1小時前 | 查看 |
100 / 100 | Reduce inversion count | AC | C# | 566ms | 30MB | 2小時前 | 查看 |
100 / 100 | K-th string | AC | GCC | 26ms | 15MB | 2小時前 | 查看 |
70 / 100 | K-th string | PE | GCC | 14ms | 48MB | 2小時前 | 查看 |
/ 100 | K-th string | CE | GCC | 0ms | 0MB | 2小時前 | 查看 |
/ 100 | K-th string | CE | GCC | 0ms | 0MB | 2小時前 | 查看 |
100 / 100 | String reorder | AC | C# | 457ms | 11MB | 3小時前 | 查看 |
/ 100 | String reorder | CE | GCC | 0ms | 0MB | 3小時前 | 查看 |
/ 100 | String reorder | CE | GCC | 0ms | 0MB | 3小時前 | 查看 |