DHT是什麼
- DHT全稱叫分佈式哈希表(Distributed Hash Table),是一種分佈式存儲方法。在不須要服務器的狀況下,每一個客戶端負責一個小範圍的路由,並負責存儲一小部分數據,從而實現整個DHT網絡的尋址和存儲。
- 各類博客已經有不少關於DHT介紹,這裏就不詳細列舉了
加入DHT網絡能夠作什麼
- 老司機開車(神祕代碼)
- P2P資源共享
DHT網絡的其中一種協議實現(Kademlia)
- 要加入一個DHT網絡,須要首先知道這個網絡中的任意一個節點。如何得到這個節點?在一些開源的P2P軟件中,會提供一些節點地址
- 主要協議
- ping(用於肯定某個節點是否在線。這個請求主要用於輔助路由表的更新)
- find_node(用於查找某個節點,以得到其地址信息。)
- get_peer(經過資源的infohash得到資源對應的peer列表。)
- announce_peer(通知其餘節點本身開始下載某個資源,announce_peer中會攜帶get_peer迴應消息裏的token。)
DHT爬蟲的工做原理
- 經過其餘節點的announce_peer發來的infohash確認網絡中有某個資源可被下載
- 經過從網絡中獲取這個資源的種子文件,來得到該資源的描述
- 不停的認識新節點,讓遠程節點保存自身到遠程的路由表中
爬蟲作的工做
- BOOTSTRAP過程,加入DHT網絡(主動認識DHT網絡的其中一個節點)
- 加入進DHT網絡後。遠端節點會主動告訴咱們它認識哪些節點
- 認識遠端節點認識的節點
- 當遠端成功保存自身節點到遠端路由表中的時候,目的達成
- 等待遠端的announce_peer消息
- 成功獲取遠端的下載hash
- 開車!(霧
使用Python實現的爬蟲:
# coding: utf-8
import socket
from hashlib import sha1
from random import randint
from struct import unpack, pack
from socket import inet_aton, inet_ntoa
from bisect import bisect_left
from threading import Timer
# from time import sleep
from bencode import bencode, bdecode
BOOTSTRAP_NODES = [
("router.bittorrent.com", 6881),
("dht.transmissionbt.com", 6881),
("router.utorrent.com", 6881)
]
TID_LENGTH = 4
KRPC_TIMEOUT = 10
REBORN_TIME = 5 * 60
K = 8
def entropy(bytes):
s = ""
for i in range(bytes):
s += chr(randint(0, 255))
return s
# """把爬蟲"假裝"成正常node, 一個正常的node有ip, port, node ID三個屬性, 由於是基於UDP協議,
# 因此向對方發送信息時, 即便沒"明確"說明本身的ip和port時, 對方天然會知道你的ip和port,
# 反之亦然. 那麼咱們自身node就只須要生成一個node ID就行, 協議裏說到node ID用sha1算法生成,
# sha1算法生成的值是長度是20 byte, 也就是20 * 8 = 160 bit, 正好如DHT協議裏說的那範圍: 0 至 2的160次方,
# 也就是總共能生成1461501637330902918203684832716283019655932542976個獨一無二的node.
# ok, 因爲sha1老是生成20 byte的值, 因此哪怕你寫SHA1(20)或SHA1(19)或SHA1("I am a 2B")均可以,
# 只要保證大大下降與別人重複概率就行. 注意, node ID非十六進制,
# 也就是說非FF5C85FE1FDB933503999F9EB2EF59E4B0F51ECA這個樣子, 即非hash.hexdigest(). """
def random_id():
hash = sha1()
hash.update( entropy(20) )
return hash.digest()
def decode_nodes(nodes):
n = []
length = len(nodes)
if (length % 26) != 0:
return n
for i in range(0, length, 26):
nid = nodes[i:i+20]
ip = inet_ntoa(nodes[i+20:i+24])
port = unpack("!H", nodes[i+24:i+26])[0]
n.append( (nid, ip, port) )
return n
def encode_nodes(nodes):
strings = []
for node in nodes:
s = "%s%s%s" % (node.nid, inet_aton(node.ip), pack("!H", node.port))
strings.append(s)
return "".join(strings)
def intify(hstr):
#"""這是一個小工具, 把一個node ID轉換爲數字. 後面會頻繁用到."""
return long(hstr.encode('hex'), 16) #先轉換成16進制, 再變成數字
def timer(t, f):
Timer(t, f).start()
class BucketFull(Exception):
pass
class KRPC(object):
def __init__(self):
self.types = {
"r": self.response_received,
"q": self.query_received
}
self.actions = {
"ping": self.ping_received,
"find_node": self.find_node_received,
"get_peers": self.get_peers_received,
"announce_peer": self.announce_peer_received,
}
self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.socket.bind(("0.0.0.0", self.port))
def find_node_handler(self,msg):
pass
def response_received(self, msg, address):
self.find_node_handler(msg)
def query_received(self, msg, address):
try:
self.actions[msg["q"]](msg, address)
except KeyError:
pass
def send_krpc(self, msg, address):
try:
self.socket.sendto(bencode(msg), address)
except:
pass
class Client(KRPC):
def __init__(self, table):
self.table = table
timer(KRPC_TIMEOUT, self.timeout)
timer(REBORN_TIME, self.reborn)
KRPC.__init__(self)
def find_node(self, address, nid=None):
print "find node:",address
nid = self.get_neighbor(nid) if nid else self.table.nid
tid = entropy(TID_LENGTH)
msg = {
"t": tid,
"y": "q",
"q": "find_node",
"a": {"id": nid, "target": random_id()}
}
self.send_krpc(msg, address)
def find_node_handler(self, msg):
try:
nodes = decode_nodes(msg["r"]["nodes"])
for node in nodes:
(nid, ip, port) = node
if len(nid) != 20: continue
if nid == self.table.nid: continue
self.find_node( (ip, port), nid )
except KeyError:
pass
def joinDHT(self):
for address in BOOTSTRAP_NODES:
self.find_node(address)
def timeout(self):
if len( self.table.buckets ) < 2:
self.joinDHT()
timer(KRPC_TIMEOUT, self.timeout)
def reborn(self):
self.table.nid = random_id()
self.table.buckets = [ KBucket(0, 2**160) ]
timer(REBORN_TIME, self.reborn)
def start(self):
self.joinDHT()
while True:
try:
(data, address) = self.socket.recvfrom(65536)
msg = bdecode(data)
self.types[msg["y"]](msg, address)
except Exception:
pass
def get_neighbor(self, target):
return target[:10]+random_id()[10:]
class Server(Client):
def __init__(self, master, table, port):
self.table = table
self.master = master
self.port = port
Client.__init__(self, table)
def ping_received(self, msg, address):
try:
nid = msg["a"]["id"]
msg = {
"t": msg["t"],
"y": "r",
"r": {"id": self.get_neighbor(nid)}
}
self.send_krpc(msg, address)
self.find_node(address, nid)
except KeyError:
pass
def find_node_received(self, msg, address):
try:
target = msg["a"]["target"]
neighbors = self.table.get_neighbors(target)
nid = msg["a"]["id"]
msg = {
"t": msg["t"],
"y": "r",
"r": {
"id": self.get_neighbor(target),
"nodes": encode_nodes(neighbors)
}
}
self.table.append(KNode(nid, *address))
self.send_krpc(msg, address)
self.find_node(address, nid)
except KeyError:
pass
def get_peers_received(self, msg, address):
try:
infohash = msg["a"]["info_hash"]
neighbors = self.table.get_neighbors(infohash)
nid = msg["a"]["id"]
msg = {
"t": msg["t"],
"y": "r",
"r": {
"id": self.get_neighbor(infohash),
"nodes": encode_nodes(neighbors)
}
}
self.table.append(KNode(nid, *address))
self.send_krpc(msg, address)
self.master.log(infohash)
self.find_node(address, nid)
except KeyError:
pass
def announce_peer_received(self, msg, address):
try:
infohash = msg["a"]["info_hash"]
nid = msg["a"]["id"]
msg = {
"t": msg["t"],
"y": "r",
"r": {"id": self.get_neighbor(infohash)}
}
self.table.append(KNode(nid, *address))
self.send_krpc(msg, address)
self.master.log(infohash)
self.find_node(address, nid)
except KeyError:
pass
# 該類只實例化一次.
class KTable(object):
# 這裏的nid就是經過node_id()函數生成的自身node ID. 協議裏說道, 每一個路由表至少有一個bucket,
# 還規定第一個bucket的min=0, max=2^160次方, 因此這裏就給予了一個buckets屬性來存儲bucket, 這個是列表.
def __init__(self, nid):
self.nid = nid
self.buckets = [ KBucket(0, 2**160) ]
def append(self, node):
index = self.bucket_index(node.nid)
try:
bucket = self.buckets[index]
bucket.append(node)
except IndexError:
return
except BucketFull:
if not bucket.in_range(self.nid):
return
self.split_bucket(index)
self.append(node)
# 返回與目標node ID或infohash的最近K個node.
# 定位出與目標node ID或infohash所在的bucket, 若是該bucuck有K個節點, 返回.
# 若是不夠到K個節點的話, 把該bucket前面的bucket和該bucket後面的bucket加起來, 只返回前K個節點.
# 仍是不到K個話, 再重複這個動做. 要注意不要超出最小和最大索引範圍.
# 總之, 無論你用什麼算法, 想盡辦法找出最近的K個節點.
def get_neighbors(self, target):
nodes = []
if len(self.buckets) == 0: return nodes
if len(target) != 20 : return nodes
index = self.bucket_index(target)
try:
nodes = self.buckets[index].nodes
min = index - 1
max = index + 1
while len(nodes) < K and ((min >= 0) or (max < len(self.buckets))):
if min >= 0:
nodes.extend(self.buckets[min].nodes)
if max < len(self.buckets):
nodes.extend(self.buckets[max].nodes)
min -= 1
max += 1
num = intify(target)
nodes.sort(lambda a, b, num=num: cmp(num^intify(a.nid), num^intify(b.nid)))
return nodes[:K] #K是個常量, K=8
except IndexError:
return nodes
def bucket_index(self, target):
return bisect_left(self.buckets, intify(target))
# 拆表
# index是待拆分的bucket(old bucket)的所在索引值.
# 假設這個old bucket的min:0, max:16. 拆分該old bucket的話, 分界點是8, 而後把old bucket的max改成8, min仍是0.
# 建立一個新的bucket, new bucket的min=8, max=16.
# 而後根據的old bucket中的各個node的nid, 看看是屬於哪一個bucket的範圍裏, 就裝到對應的bucket裏.
# 各回各家,各找各媽.
# new bucket的所在索引值就在old bucket後面, 即index+1, 把新的bucket插入到路由表裏.
def split_bucket(self, index):
old = self.buckets[index]
point = old.max - (old.max - old.min)/2
new = KBucket(point, old.max)
old.max = point
self.buckets.insert(index + 1, new)
for node in old.nodes[:]:
if new.in_range(node.nid):
new.append(node)
old.remove(node)
def __iter__(self):
for bucket in self.buckets:
yield bucket
class KBucket(object):
__slots__ = ("min", "max", "nodes")
# min和max就是該bucket負責的範圍, 好比該bucket的min:0, max:16的話,
# 那麼存儲的node的intify(nid)值均爲: 0到15, 那16就不負責, 這16將會是該bucket後面的bucket的min值.
# nodes屬性就是個列表, 存儲node. last_accessed表明最後訪問時間, 由於協議裏說到,
# 當該bucket負責的node有請求, 迴應操做; 刪除node; 添加node; 更新node; 等這些操做時,
# 那麼就要更新該bucket, 因此設置個last_accessed屬性, 該屬性標誌着這個bucket的"新鮮程度". 用linux話來講, touch一下.
# 這個用來便於後面說的定時刷新路由表.
def __init__(self, min, max):
self.min = min
self.max = max
self.nodes = []
# 添加node, 參數node是KNode實例.
# 若是新插入的node的nid屬性長度不等於20, 終止.
# 若是滿了, 拋出bucket已滿的錯誤, 終止. 通知上層代碼進行拆表.
# 若是未滿, 先看看新插入的node是否已存在, 若是存在, 就替換掉, 不存在, 就添加,
# 添加/替換時, 更新該bucket的"新鮮程度".
def append(self, node):
if node in self:
self.remove(node)
self.nodes.append(node)
else:
if len(self) < K:
self.nodes.append(node)
else:
raise BucketFull
def remove(self, node):
self.nodes.remove(node)
def in_range(self, target):
return self.min <= intify(target) < self.max
def __len__(self):
return len(self.nodes)
def __contains__(self, node):
return node in self.nodes
def __iter__(self):
for node in self.nodes:
yield node
def __lt__(self, target):
return self.max <= target
class KNode(object):
# """
# nid就是node ID的簡寫, 就不取id這麼模糊的變量名了. __init__方法至關於別的OOP語言中的構造方法,
# 在python嚴格來講不是構造方法, 它是初始化, 不過, 功能差很少就行.
# """
__slots__ = ("nid", "ip", "port")
def __init__(self, nid, ip, port):
self.nid = nid
self.ip = ip
self.port = port
def __eq__(self, other):
return self.nid == other.nid
#using example
class Master(object):
def __init__(self, f):
self.f = f
self.hashArr = []
def log(self, infohash):
nhash = infohash.encode("hex")
if nhash not in self.hashArr:
self.hashArr.append(nhash)
self.f.write(+"\n")
self.f.flush()
try:
print "start DHT Spider"
f = file("hash.txt","a+")
m = Master(f)
s = Server(Master(f), KTable(random_id()), 6881)
s.start()
except KeyboardInterrupt:
s.socket.close()
f.close()