純乾貨,從源碼解析多線程與高併發,再說不會,我再也不踏足IT圈

沒什麼太多說的,多線程與高併發,面試重點,咱直接進入正題,聯合底層源碼,咱們從源碼看一下,多線程與高併發底層的知識點,這也是阿里p8+的面試官建議的學習到的級別java

CAS

Compare And Swap (Compare And Exchange) / 自旋 / 自旋鎖 / 無鎖linux

由於常常配合循環操做,直到完成爲止,因此泛指一類操做git

cas(v, a, b) ,變量v,期待值a, 修改值b面試

ABA問題,你的女友在離開你的這段兒時間經歷了別的人,自旋就是你空轉等待,一直等到她接納你爲止bootstrap

解決辦法(版本號 AtomicStampedReference),基礎類型簡單值不須要版本號安全

Unsafe

AtomicInteger:多線程

public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

Unsafe:架構

public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

運用:併發

package com.mashibing.jol;
​
import sun.misc.Unsafe;
​
import java.lang.reflect.Field;
​
public class T02_TestUnsafe {
​
    int i = 0;
    private static T02_TestUnsafe t = new T02_TestUnsafe();
​
    public static void main(String[] args) throws Exception {
        //Unsafe unsafe = Unsafe.getUnsafe();

        Field unsafeField = Unsafe.class.getDeclaredFields()[0];
        unsafeField.setAccessible(true);
        Unsafe unsafe = (Unsafe) unsafeField.get(null);

        Field f = T02_TestUnsafe.class.getDeclaredField("i");
        long offset = unsafe.objectFieldOffset(f);
        System.out.println(offset);

        boolean success = unsafe.compareAndSwapInt(t, offset, 0, 1);
        System.out.println(success);
        System.out.println(t.i);
        //unsafe.compareAndSwapInt()
   }
}

jdk8u: unsafe.cpp:app

cmpxchg = compare and exchange

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

jdk8u: atomic_linux_x86.inline.hpp

is_MP = Multi Processor

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
  int mp = os::is_MP();
  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
                   : "=a" (exchange_value)
                   : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                   : "cc", "memory");
  return exchange_value;
}

jdk8u: os.hpp is_MP()

 static inline bool is_MP() {
    // During bootstrap if _processor_count is not yet initialized
    // we claim to be MP as that is safest. If any platform has a
    // stub generator that might be triggered in this phase and for
    // which being declared MP when in fact not, is a problem - then
    // the bootstrap routine for the stub generator needs to check
    // the processor count directly and leave the bootstrap routine
    // in place until called after initialization has ocurred.
    return (_processor_count != 1) || AssumeMP;
 }

jdk8u: atomic_linux_x86.inline.hpp

#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "

最終實現:

cmpxchg = cas修改變量值

lock cmpxchg 指令

硬件:

lock指令在執行後面指令的時候鎖定一個北橋信號

(不採用鎖總線的方式)

工具:JOL = Java Object Layout

<dependencies>
        <!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core -->
        <dependency>
            <groupId>org.openjdk.jol</groupId>
            <artifactId>jol-core</artifactId>
            <version>0.9</version>
        </dependency>
    </dependencies>

jdk8u: markOop.hpp

// Bit-format of an object header (most significant first, big endian layout below):
//
// 32 bits:
// --------
//             hash:25 ------------>| age:4   biased_lock:1 lock:2 (normal object)
//             JavaThread*:23 epoch:2 age:4   biased_lock:1 lock:2 (biased object)
//             size:32 ------------------------------------------>| (CMS free block)
//             PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object)
//
// 64 bits:
// --------
// unused:25 hash:31 -->| unused:1   age:4   biased_lock:1 lock:2 (normal object)
// JavaThread*:54 epoch:2 unused:1   age:4   biased_lock:1 lock:2 (biased object)
// PromotedObject*:61 --------------------->| promo_bits:3 ----->| (CMS promoted object)
// size:64 ----------------------------------------------------->| (CMS free block)
//
// unused:25 hash:31 -->| cms_free:1 age:4   biased_lock:1 lock:2 (COOPs && normal object)
// JavaThread*:54 epoch:2 cms_free:1 age:4   biased_lock:1 lock:2 (COOPs && biased object)
// narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 ----->| (COOPs && CMS promoted object)
// unused:21 size:35 -->| cms_free:1 unused:7 ------------------>| (COOPs && CMS free block)

synchronized的橫切面詳解

  1. synchronized原理
  2. 升級過程
  3. 彙編實現
  4. vs reentrantLock的區別

java源碼層級

synchronized(o)

字節碼層級

monitorenter moniterexit

JVM層級(Hotspot)

package com.mashibing.insidesync;
​
import org.openjdk.jol.info.ClassLayout;
​
public class T01_Sync1 {
  
​
    public static void main(String[] args) {
        Object o = new Object();
​
        System.out.println(ClassLayout.parseInstance(o).toPrintable());
    }
}
com.mashibing.insidesync.T01_Sync1$Lock object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4   (object header)  05 00 00 00 (00000101 00000000 00000000 00000000) (5)
      4     4   (object header)  00 00 00 00 (00000000 00000000 00000000 00000000) (0)
      8     4   (object header)  49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes total
com.mashibing.insidesync.T02_Sync2$Lock object internals:
 OFFSET  SIZE   TYPE DESCRIPTION                               VALUE
      0     4   (object header)  05 90 2e 1e (00000101 10010000 00101110 00011110) (506368005)
      4     4   (object header)  1b 02 00 00 (00011011 00000010 00000000 00000000) (539)
      8     4   (object header)  49 ce 00 20 (01001001 11001110 00000000 00100000) (536923721)
     12     4        (loss due to the next object alignment)
Instance size: 16 bytes
Space losses: 0 bytes internal + 4 bytes external = 4 bytes tota

InterpreterRuntime:: monitorenter方法

IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
  thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
  if (PrintBiasedLockingStatistics) {
    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  }
  Handle h_obj(thread, elem->obj());
  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
         "must be NULL or an object");
  if (UseBiasedLocking) {
    // Retry fast entry if bias is revoked to avoid unnecessary inflation
    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 } else {
    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 }
  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
         "must be NULL or an object");
#ifdef ASSERT
  thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END

synchronizer.cpp

revoke_and_rebias

void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 if (UseBiasedLocking) {
    if (!SafepointSynchronize::is_at_safepoint()) {
      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
        return;
      }
    } else {
      assert(!attempt_rebias, "can not rebias toward VM thread");
      BiasedLocking::revoke_at_safepoint(obj);
    }
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 }
​
 slow_enter (obj, lock, THREAD) ;
}
void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
​
  if (mark->is_neutral()) {
    // Anticipate successful CAS -- the ST of the displaced mark must
    // be visible <= the ST performed by the CAS.
    lock->set_displaced_header(mark);
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
   }
    // Fall through to inflate() ...
 } else
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    lock->set_displaced_header(NULL);
    return;
  }
​
#if 0
  // The following optimization isn't particularly useful.
  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
    lock->set_displaced_header (NULL) ;
    return ;
 }
#endif

  // The object header will never be displaced to this lock,
  // so it does not matter what the value is, except that it
  // must be non-zero to avoid looking like a re-entrant lock,
  // and must not look locked either.
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}

inflate方法:膨脹爲重量級鎖

鎖升級過程

JDK8 markword實現表:

無鎖 - 偏向鎖 - 輕量級鎖 (自旋鎖,自適應自旋)- 重量級鎖

synchronized優化的過程和markword息息相關

用markword中最低的三位表明鎖狀態 其中1位是偏向鎖位 兩位是普通鎖位

  1. Object o = new Object() 鎖 = 0 01 無鎖態
  2. o.hashCode() 001 + hashcode00000001 10101101 00110100 00110110
    01011001 00000000 00000000 00000000little endian big endian 00000000 00000000 00000000 01011001 00110110 00110100 10101101 00000000
  3. 默認synchronized(o) 00 -> 輕量級鎖 默認狀況 偏向鎖有個時延,默認是4秒 why? 由於JVM虛擬機本身有一些默認啓動的線程,裏面有好多sync代碼,這些sync代碼啓動時就知道確定會有競爭,若是使用偏向鎖,就會形成偏向鎖不斷的進行鎖撤銷和鎖升級的操做,效率較低。-XX:BiasedLockingStartupDelay=0
  4. 若是設定上述參數 new Object () - > 101 偏向鎖 ->線程ID爲0 -> Anonymous BiasedLock 打開偏向鎖,new出來的對象,默認就是一個可偏向匿名對象101
  5. 若是有線程上鎖 上偏向鎖,指的就是,把markword的線程ID改成本身線程ID的過程 偏向鎖不可重偏向 批量偏向 批量撤銷
  6. 若是有線程競爭 撤銷偏向鎖,升級輕量級鎖 線程在本身的線程棧生成LockRecord ,用CAS操做將markword設置爲指向本身這個線程的LR的指針,設置成功者獲得鎖
  7. 若是競爭加重 競爭加重:有線程超過10次自旋, -XX:PreBlockSpin, 或者自旋線程數超過CPU核數的一半, 1.6以後,加入自適應自旋 Adapative Self Spinning , JVM本身控制 升級重量級鎖:-> 向操做系統申請資源,linux mutex , CPU從3級-0級系統調用,線程掛起,進入等待隊列,等待操做系統的調度,而後再映射回用戶空間

(以上實驗環境是JDK11,打開就是偏向鎖,而JDK8默認對象頭是無鎖)

偏向鎖默認是打開的,可是有一個時延,若是要觀察到偏向鎖,應該設定參數

沒錯,我就是廁所所長

加鎖,指的是鎖定對象

鎖升級的過程

JDK較早的版本 OS的資源 互斥量 用戶態 -> 內核態的轉換 重量級 效率比較低

現代版本進行了優化

無鎖 - 偏向鎖 -輕量級鎖(自旋鎖)-重量級鎖

偏向鎖 - markword 上記錄當前線程指針,下次同一個線程加鎖的時候,不須要爭用,只須要判斷線程指針是否同一個,因此,偏向鎖,偏向加鎖的第一個線程 。hashCode備份在線程棧上 線程銷燬,鎖降級爲無鎖

有爭用 - 鎖升級爲輕量級鎖 - 每一個線程有本身的LockRecord在本身的線程棧上,用CAS去爭用markword的LR的指針,指針指向哪一個線程的LR,哪一個線程就擁有鎖

自旋超過10次,升級爲重量級鎖 - 若是太多線程自旋 CPU消耗過大,不如升級爲重量級鎖,進入等待隊列(不消耗CPU)-XX:PreBlockSpin

自旋鎖在 JDK1.4.2 中引入,使用 -XX:+UseSpinning 來開啓。JDK 6 中變爲默認開啓,而且引入了自適應的自旋鎖(適應性自旋鎖)。

自適應自旋鎖意味着自旋的時間(次數)再也不固定,而是由前一次在同一個鎖上的自旋時間及鎖的擁有者的狀態來決定。若是在同一個鎖對象上,自旋等待剛剛成功得到過鎖,而且持有鎖的線程正在運行中,那麼虛擬機就會認爲此次自旋也是頗有可能再次成功,進而它將容許自旋等待持續相對更長的時間。若是對於某個鎖,自旋不多成功得到過,那在之後嘗試獲取這個鎖時將可能省略掉自旋過程,直接阻塞線程,避免浪費處理器資源。

偏向鎖因爲有鎖撤銷的過程revoke,會消耗系統資源,因此,在鎖爭用特別激烈的時候,用偏向鎖未必效率高。還不如直接使用輕量級鎖。

synchronized最底層實現

public class T {
    static volatile int i = 0;
    
    public static void n() { i++; }
    
    public static synchronized void m() {}
    
    publics static void main(String[] args) {
        for(int j=0; j<1000_000; j++) {
            m();
            n();
        }
    }
}
​

java -XX:+UnlockDiagonositicVMOptions -XX:+PrintAssembly T

C1 Compile Level 1 (一級優化)

C2 Compile Level 2 (二級優化)

找到m() n()方法的彙編碼,會看到 lock comxchg .....指令

synchronized vs Lock (CAS)

在高爭用 高耗時的環境下synchronized效率更高
 在低爭用 低耗時的環境下CAS效率更高
 synchronized到重量級以後是等待隊列(不消耗CPU)
 CAS(等待期間消耗CPU)
 
 一切以實測爲準

鎖消除 lock eliminate

public void add(String str1,String str2){
         StringBuffer sb = new StringBuffer();
         sb.append(str1).append(str2);
}

咱們都知道 StringBuffer 是線程安全的,由於它的關鍵方法都是被 synchronized 修飾過的,但咱們看上面這段代碼,咱們會發現,sb 這個引用只會在 add 方法中使用,不可能被其它線程引用(由於是局部變量,棧私有),所以 sb 是不可能共享的資源,JVM 會自動消除 StringBuffer 對象內部的鎖。

粗化 lock coarsening

public String test(String str){
       
       int i = 0;
       StringBuffer sb = new StringBuffer():
       while(i < 100){
           sb.append(str);
           i++;
       }
       return sb.toString():
}

JVM 會檢測到這樣一連串的操做都對同一個對象加鎖(while 循環內 100 次執行 append,沒有鎖粗化的就要進行 100 次加鎖/解鎖),此時 JVM 就會將加鎖的範圍粗化到這一連串的操做的外部(好比 while 虛幻體外),使得這一連串操做只須要加一次鎖便可。

純乾貨,從源碼解析多線程與高併發,再說不會,我再也不踏足IT圈
 

關注公衆號:Java架構師聯盟,每日更新技術好文

部分資料已經上傳到個人git倉庫中:有須要的能夠下載

https://gitee.com/biwangsheng/mxq

相關文章
相關標籤/搜索