原文地址:https://blog.csdn.net/xlgen157387/article/details/79530877面試
前面一節說到了《爲何說Redis是單線程的以及Redis爲何這麼快!》,今天給你們整理一篇關於Redis常常被問到的問題:緩存雪崩、緩存穿透、緩存預熱、緩存更新、緩存降級等概念的入門及簡單解決方案。sql
緩存雪崩咱們能夠簡單的理解爲:因爲原有緩存失效,新緩存未到期間(例如:咱們設置緩存時採用了相同的過時時間,在同一時刻出現大面積的緩存過時),全部本來應該訪問緩存的請求都去查詢數據庫了,而對數據庫CPU和內存形成巨大壓力,嚴重的會形成數據庫宕機。從而造成一系列連鎖反應,形成整個系統崩潰。數據庫
緩存正常從Redis中獲取,示意圖以下:緩存
緩存失效瞬間示意圖以下:服務器
緩存失效時的雪崩效應對底層系統的衝擊很是可怕!大多數系統設計者考慮用加鎖或者隊列的方式保證來保證不會有大量的線程對數據庫一次性進行讀寫,從而避免失效時大量的併發請求落到底層存儲系統上。還有一個簡單方案就時講緩存失效時間分散開,好比咱們能夠在原有的失效時間基礎上增長一個隨機值,好比1-5分鐘隨機,這樣每個緩存的過時時間的重複率就會下降,就很難引起集體失效的事件。網絡
如下簡單介紹兩種實現方式的僞代碼:併發
(1)碰到這種狀況,通常併發量不是特別多的時候,使用最多的解決方案是加鎖排隊,僞代碼以下:分佈式
//僞代碼 public object GetProductListNew() { int cacheTime = 30; String cacheKey = "product_list"; String lockKey = cacheKey; String cacheValue = CacheHelper.get(cacheKey); if (cacheValue != null) { return cacheValue; } else { synchronized(lockKey) { cacheValue = CacheHelper.get(cacheKey); if (cacheValue != null) { return cacheValue; } else { //這裏通常是sql查詢數據 cacheValue = GetProductListFromDB(); CacheHelper.Add(cacheKey, cacheValue, cacheTime); } } return cacheValue; } }
加鎖排隊只是爲了減輕數據庫的壓力,並無提升系統吞吐量。假設在高併發下,緩存重建期間key是鎖着的,這是過來1000個請求999個都在阻塞的。一樣會致使用戶等待超時,這是個治標不治本的方法!高併發
注意:加鎖排隊的解決方式分佈式環境的併發問題,有可能還要解決分佈式鎖的問題;線程還會被阻塞,用戶體驗不好!所以,在真正的高併發場景下不多使用!性能
(2)還有一個解決辦法解決方案是:給每個緩存數據增長相應的緩存標記,記錄緩存的是否失效,若是緩存標記失效,則更新數據緩存,實例僞代碼以下:
//僞代碼 public object GetProductListNew() { int cacheTime = 30; String cacheKey = "product_list"; //緩存標記 String cacheSign = cacheKey + "_sign"; String sign = CacheHelper.Get(cacheSign); //獲取緩存值 String cacheValue = CacheHelper.Get(cacheKey); if (sign != null) { return cacheValue; //未過時,直接返回 } else { CacheHelper.Add(cacheSign, "1", cacheTime); ThreadPool.QueueUserWorkItem((arg) -> { //這裏通常是 sql查詢數據 cacheValue = GetProductListFromDB(); //日期設緩存時間的2倍,用於髒讀 CacheHelper.Add(cacheKey, cacheValue, cacheTime * 2); }); return cacheValue; } }
解釋說明:
一、緩存標記:記錄緩存數據是否過時,若是過時會觸發通知另外的線程在後臺去更新實際key的緩存;
二、緩存數據:它的過時時間比緩存標記的時間延長1倍,例:標記緩存時間30分鐘,數據緩存設置爲60分鐘。 這樣,當緩存標記key過時後,實際緩存還能把舊數據返回給調用端,直到另外的線程在後臺更新完成後,纔會返回新緩存。
關於緩存崩潰的解決方法,這裏提出了三種方案:使用鎖或隊列、設置過時標誌更新緩存、爲key設置不一樣的緩存失效時間,還有一各被稱爲「二級緩存」的解決方法,有興趣的讀者能夠自行研究。
緩存穿透是指用戶查詢數據,在數據庫沒有,天然在緩存中也不會有。這樣就致使用戶查詢的時候,在緩存中找不到,每次都要去數據庫再查詢一遍,而後返回空(至關於進行了兩次無用的查詢)。這樣請求就繞過緩存直接查數據庫,這也是常常提的緩存命中率問題。
有不少種方法能夠有效地解決緩存穿透問題,最多見的則是採用布隆過濾器,將全部可能存在的數據哈希到一個足夠大的bitmap中,一個必定不存在的數據會被這個bitmap攔截掉,從而避免了對底層存儲系統的查詢壓力。
另外也有一個更爲簡單粗暴的方法,若是一個查詢返回的數據爲空(無論是數據不存在,仍是系統故障),咱們仍然把這個空結果進行緩存,但它的過時時間會很短,最長不超過五分鐘。經過這個直接設置的默認值存放到緩存,這樣第二次到緩衝中獲取就有值了,而不會繼續訪問數據庫,這種辦法最簡單粗暴!
//僞代碼 public object GetProductListNew() { int cacheTime = 30; String cacheKey = "product_list"; String cacheValue = CacheHelper.Get(cacheKey); if (cacheValue != null) { return cacheValue; } cacheValue = CacheHelper.Get(cacheKey); if (cacheValue != null) { return cacheValue; } else { //數據庫查詢不到,爲空 cacheValue = GetProductListFromDB(); if (cacheValue == null) { //若是發現爲空,設置個默認值,也緩存起來 cacheValue = string.Empty; } CacheHelper.Add(cacheKey, cacheValue, cacheTime); return cacheValue; } }
把空結果,也給緩存起來,這樣下次一樣的請求就能夠直接返回空了,便可以免當查詢的值爲空時引發的緩存穿透。同時也能夠單獨設置個緩存區域存儲空值,對要查詢的key進行預先校驗,而後再放行給後面的正常緩存處理邏輯。
緩存預熱這個應該是一個比較常見的概念,相信不少小夥伴都應該能夠很容易的理解,緩存預熱就是系統上線後,將相關的緩存數據直接加載到緩存系統。這樣就能夠避免在用戶請求的時候,先查詢數據庫,而後再將數據緩存的問題!用戶直接查詢事先被預熱的緩存數據!
解決思路:
一、直接寫個緩存刷新頁面,上線時手工操做下;
二、數據量不大,能夠在項目啓動的時候自動進行加載;
三、定時刷新緩存;
除了緩存服務器自帶的緩存失效策略以外(Redis默認的有6中策略可供選擇),咱們還能夠根據具體的業務需求進行自定義的緩存淘汰,常見的策略有兩種:
(1)定時去清理過時的緩存;
(2)當有用戶請求過來時,再判斷這個請求所用到的緩存是否過時,過時的話就去底層系統獲得新數據並更新緩存。
二者各有優劣,第一種的缺點是維護大量緩存的key是比較麻煩的,第二種的缺點就是每次用戶請求過來都要判斷緩存失效,邏輯相對比較複雜!具體用哪一種方案,你們能夠根據本身的應用場景來權衡。
當訪問量劇增、服務出現問題(如響應時間慢或不響應)或非核心服務影響到核心流程的性能時,仍然須要保證服務仍是可用的,即便是有損服務。系統能夠根據一些關鍵數據進行自動降級,也能夠配置開關實現人工降級。
降級的最終目的是保證核心服務可用,即便是有損的。並且有些服務是沒法降級的(如加入購物車、結算)。
在進行降級以前要對系統進行梳理,看看系統是否是能夠丟卒保帥;從而梳理出哪些必須誓死保護,哪些可降級;好比能夠參考日誌級別設置預案:
(1)通常:好比有些服務偶爾由於網絡抖動或者服務正在上線而超時,能夠自動降級;
(2)警告:有些服務在一段時間內成功率有波動(如在95~100%之間),能夠自動降級或人工降級,併發送告警;
(3)錯誤:好比可用率低於90%,或者數據庫鏈接池被打爆了,或者訪問量忽然猛增到系統能承受的最大閥值,此時能夠根據狀況自動降級或者人工降級;
(4)嚴重錯誤:好比由於特殊緣由數據錯誤了,此時須要緊急人工降級。
這些都是實際項目中,可能碰到的一些問題,也是面試的時候常常會被問到的知識點,實際上還有不少不少各類各樣的問題,文中的解決方案,也不可能知足全部的場景,相對來講只是對該問題的入門解決方法。通常正式的業務場景每每要複雜的多,應用場景不一樣,方法和解決方案也不一樣,因爲上述方案,考慮的問題並非很全面,所以並不適用於正式的項目開發,可是能夠做爲概念理解入門,具體解決方案要根據實際狀況來肯定!