在GIS(地理信息科學)中,地形有兩種表達方式,一種是格網DEM,一種是不規則三角網TIN。通常狀況下規則格網DEM用的比較多,由於能夠將高程看成像素,將其存儲爲圖片類型的數據(例如.tif)。可是規則格網存儲的數據量大,按規則取點,並不能最大程度的保證地形特徵,因此不少狀況下須要將其表達爲不規則三角網,也就是TIN。html
下載SRTM30的DEM數據,找到美國大峽谷附近的地形,經過UTM投影,將其轉換成30米的平面座標的DEM(.tif格式)。經過Global Mapper打開,顯示的效果以下:
ios
格網DEM自己也能夠看做是一個三角網,每一個方格由兩個三角形組成,N個方格據組成了一個地形格網。因此在參考文獻一中提到了一種保留重要點法,將格網DEM中認爲不重要的點去除掉,剩下的點構建成不規則三角網便可。那麼怎麼直到有的點重要,有的點不重要呢?參考文獻一中提到了一種約束:
算法
能夠看到這相似於圖像處理中的濾波操做,經過比較每一個高程點與周圍的平均高差,若是大於一個閾值,則爲重要點,不然爲不重要點。其中的關鍵點就是求空間點與直線的距離,具體算法可參看這篇文章《空間點與直線距離算法》。app
通過保留重要點法過濾以後,剩下的點就要進行構網了。通常來講最好構建成Delaunay三角網(由於Delaunay三角網具備不少最優特性)。Delaunay三角網的構建算法也挺複雜,不過能夠經過計算幾何算法庫CGAL來構建。spa
查閱CGAL的文檔,發現CGAL竟然已經有了GIS專題,裏面有許多與地形處理相關的示例。其中一個示例就是經過點集生成了Delaunay三角網,而且生成了.ply文件。.ply文件正好是一種三維數據格式,可以被不少三維軟件打開。
.net
解決了兩個關鍵算法,具體實現就很簡單了:引入GDAL數據來處理地形數據(.tif),遍歷每一個像素點(高程點)作濾波操做,經過CGAL來構建TIN:3d
#include <iostream> #include <string> #include <Vec3.hpp> #include <threeCGAL.h> #include <gdal_priv.h> #include <CGAL/Exact_predicates_inexact_constructions_kernel.h> #include <CGAL/Projection_traits_xy_3.h> #include <CGAL/Delaunay_triangulation_2.h> #include <CGAL/Triangulation_vertex_base_with_info_2.h> #include <CGAL/Triangulation_face_base_with_info_2.h> #include <CGAL/boost/graph/graph_traits_Delaunay_triangulation_2.h> #include <CGAL/boost/graph/copy_face_graph.h> #include <CGAL/Point_set_3.h> #include <CGAL/Surface_mesh.h> #include <CGAL/Polygon_mesh_processing/border.h> #include <CGAL/Polygon_mesh_processing/remesh.h> using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel; using Projection_traits = CGAL::Projection_traits_xy_3<Kernel>; using Point_2 = Kernel::Point_2; using Point_3 = Kernel::Point_3; using Segment_3 = Kernel::Segment_3; // Triangulated Irregular Network using TIN = CGAL::Delaunay_triangulation_2<Projection_traits>; using namespace std; int main(int argc, char *argv[]) { GDALAllRegister(); string demPath = "D:/Work/DEM2TIN/DEM.tif"; string tinPath = "D:/Work/DEM2TIN/Tin.ply"; GDALDataset* img = (GDALDataset *)GDALOpen(demPath.c_str(), GA_ReadOnly); if (!img) { cout << "Can't Open Image!" << endl; return 1; } int imgWidth = img->GetRasterXSize(); //圖像寬度 int imgHeight = img->GetRasterYSize(); //圖像高度 int bandNum = img->GetRasterCount(); //波段數 //int depth = GDALGetDataTypeSize(img->GetRasterBand(1)->GetRasterDataType()) / 8; //圖像深度 int depth = sizeof(float); //圖像深度 double padfTransform[6]; img->GetGeoTransform(padfTransform); double dx = padfTransform[1]; double startx = padfTransform[0] + 0.5 * dx; double dy = -padfTransform[5]; double starty = padfTransform[3] - imgHeight * dy + 0.5 * dy; //申請buf int bufWidth = imgWidth; int bufHeight = imgHeight; size_t imgBufNum = (size_t)bufWidth * bufHeight * bandNum; size_t imgBufOffset = (size_t)bufWidth * (bufHeight - 1) * bandNum; float *pblock = new float[imgBufNum]; //讀取 img->RasterIO(GF_Read, 0, 0, bufWidth, bufHeight, pblock + imgBufOffset, bufWidth, bufHeight, GDT_Float32, bandNum, nullptr, bandNum*depth, -bufWidth * bandNum*depth, depth); CGAL::Point_set_3<Point_3> points; double zThreshold = 5; // for (int yi = 0; yi < imgHeight; yi++) { for (int xi = 0; xi < imgWidth; xi++) { //將四個角點的約束加入,保證與DEM範圍一致 if ((xi == 0 && yi == 0) || (xi == imgWidth - 1 && yi == 0) || (xi == imgWidth - 1 && yi == imgHeight - 1) || (xi == 0 && yi == imgHeight - 1)) { double gx1 = startx + dx * xi; double gy1 = starty + dy * yi; size_t m11 = (size_t)(imgWidth)* yi + xi; tinyCG::Vec3d P(gx1, gy1, pblock[m11]); points.insert(Point_3(P.x(), P.y(), P.z())); } else { double gx0 = startx + dx * (xi - 1); double gy0 = starty + dy * (yi - 1); double gx1 = startx + dx * xi; double gy1 = starty + dy * yi; double gx2 = startx + dx * (xi + 1); double gy2 = starty + dy * (yi + 1); size_t m00 = (size_t)imgWidth * (yi - 1) + xi - 1; size_t m01 = (size_t)imgWidth * (yi - 1) + xi; size_t m02 = (size_t)imgWidth * (yi - 1) + xi + 1; size_t m10 = (size_t)imgWidth* yi + xi - 1; size_t m11 = (size_t)imgWidth* yi + xi; size_t m12 = (size_t)imgWidth* yi + xi + 1; size_t m20 = (size_t)imgWidth * (yi + 1) + xi - 1; size_t m21 = (size_t)imgWidth * (yi + 1) + xi; size_t m22 = (size_t)imgWidth * (yi + 1) + xi + 1; tinyCG::Vec3d P(gx1, gy1, pblock[m11]); double zMeanDistance = 0; int counter = 0; if(m00 < imgBufNum && m22 < imgBufNum) { tinyCG::Vec3d A(gx0, gy0, pblock[m00]); tinyCG::Vec3d E(gx2, gy2, pblock[m22]); zMeanDistance = zMeanDistance + tinyCG::threeCGAL::CalDistancePointAndLine(P, A, E); counter++; } if (m02 < imgBufNum && m20 < imgBufNum) { tinyCG::Vec3d C(gx2, gy0, pblock[m02]); tinyCG::Vec3d G(gx0, gy2, pblock[m20]); zMeanDistance = zMeanDistance + tinyCG::threeCGAL::CalDistancePointAndLine(P, C, G); counter++; } if (m01 < imgBufNum && m21 < imgBufNum) { tinyCG::Vec3d B(gx1, gy0, pblock[m01]); tinyCG::Vec3d F(gx1, gy2, pblock[m21]); zMeanDistance = zMeanDistance + tinyCG::threeCGAL::CalDistancePointAndLine(P, B, F); counter++; } if (m12 < imgBufNum && m10 < imgBufNum) { tinyCG::Vec3d D(gx2, gy1, pblock[m12]); tinyCG::Vec3d H(gx0, gy1, pblock[m10]); zMeanDistance = zMeanDistance + tinyCG::threeCGAL::CalDistancePointAndLine(P, D, H); counter++; } zMeanDistance = zMeanDistance / counter; if (zMeanDistance > zThreshold) { points.insert(Point_3(P.x(), P.y(), P.z())); } } } } delete[] pblock; pblock = nullptr; GDALClose(img); // Create DSM TIN dsm (points.points().begin(), points.points().end()); using Mesh = CGAL::Surface_mesh<Point_3>; Mesh dsm_mesh; CGAL::copy_face_graph (dsm, dsm_mesh); std::ofstream dsm_ofile (tinPath, std::ios_base::binary); CGAL::set_binary_mode (dsm_ofile); CGAL::write_ply (dsm_ofile, dsm_mesh); dsm_ofile.close(); return 0; }
將最終生成的三維模型文件.ply經過MeshLab打開,渲染效果以下:
code
經過Global Mapper還能夠看到具體的三角構網效果:
orm