二分答案,混合圖歐拉路斷定php
一開始想了一個上下界網絡流模型,而後發現不用上下界網絡流也能夠ios
對於無向邊,強制從\(u \rightarrow v\),計算每一個點入度出度網絡
二者差必須是偶數,令\(x = \frac{ind_i - outd_i}{2}\)spa
每條無向邊v向u連容量爲1的邊code
對於\(x>0\), s向i連容量x的邊;get
\(x<0\), i向t連容量-x的邊。string
這樣一條原無向邊滿流 就是 與強制方向相反it
有解 當且僅當 s出邊滿流io
本題l不能初始化0,貌似有什麼詭異的特殊數據...class
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <set> #include <map> using namespace std; typedef long long ll; #define fir first #define sec second const int N = 2005, M = 1e4+5, inf = 1e9+5; inline int read() { char c=getchar(); int x=0,f=1; while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();} return x*f; } int n, m, s, t; struct meow {int u, v, c, d;} a[M]; struct edge {int v, ne, c, f;} e[M]; int cnt = 1, h[N]; inline void ins(int u, int v, int c) { //printf("ins %d --> %d %d\n", u, v, c); e[++cnt] = (edge) {v, h[u], c, 0}; h[u] = cnt; e[++cnt] = (edge) {u, h[v], 0, 0}; h[v] = cnt; } int d[N], q[N], head, tail, vis[N]; bool bfs() { memset(vis, 0, sizeof(vis)); head = tail = 1; d[s] = 0; q[tail++] = s; vis[s] = 1; while(head != tail) { int u = q[head++]; for(int i=h[u]; i; i=e[i].ne) if(e[i].c > e[i].f && !vis[e[i].v]) { int v = e[i].v; vis[v] = 1; d[v] = d[u]+1; q[tail++] = v; if(v == t) return true; } } return false; } int cur[N]; int dfs(int u, int a) { if(u == t || a == 0) return a; int flow = 0, f; for(int &i=cur[u]; i; i=e[i].ne) { int v = e[i].v; if(d[v] == d[u]+1 && (f = dfs(v, min(a, e[i].c - e[i].f))) > 0) { flow += f; e[i].f += f; e[i^1].f -= f; a -= f; if(a == 0) break; } } if(a) d[u] = -1; return flow; } int dinic() { int flow = 0; while(bfs()) { for(int i=s; i<=t; i++) cur[i] = h[i]; flow += dfs(s, inf); } return flow; } int ind[N], outd[N]; bool check(int mid) { //printf("check %d\n", mid); cnt = 1; memset(h, 0, sizeof(h)); s = 0; t = n+1; memset(ind, 0, sizeof(ind)); memset(outd, 0, sizeof(outd)); for(int i=1; i<=m; i++) { int u = a[i].u, v = a[i].v; if(a[i].c <= mid && a[i].d <= mid) { outd[u]++, ind[v]++; ins(v, u, 1); } else if(a[i].c <= mid) outd[u]++, ind[v]++; else if(a[i].d <= mid) outd[v]++, ind[u]++; } int sum = 0; for(int i=1; i<=n; i++) { int x = abs(ind[i] - outd[i]); //printf("x %d %d\n", i, x); if(x & 1) return false; x >>= 1; if(ind[i] > outd[i]) ins(s, i, x), sum += x; else if(ind[i] < outd[i]) ins(i, t, x); } return dinic() == sum; } int main() { freopen("in.in", "r", stdin); n = read(); m = read(); int l = inf, r = 0, ans = -1; for(int i=1; i<=m; i++) { a[i].u = read(), a[i].v = read(), a[i].c = read(), a[i].d = read(); l = min(l, min(a[i].c, a[i].d)); r = max(r, max(a[i].c, a[i].d)); } //printf("%d\n", check(4)); return 0; while(l <= r) { int mid = (l+r) >> 1; //printf("lrmid %d %d %d\n", l, r, mid); if(check(mid)) ans = mid, r = mid-1; else l = mid+1; } if(ans == -1) puts("NIE"); else printf("%d\n", ans); }