百度學習原文地址: https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/beginners_guide/basics/fit_a_line/README.cn.htmlhtml
import paddle import paddle.fluid as fluid import numpy import math import sys from __future__ import print_function BATCH_SIZE = 20 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.test(), buf_size=500), batch_size=BATCH_SIZE) x = fluid.layers.data(name='x', shape=[13], dtype='float32') # 定義輸入的形狀和數據類型 y = fluid.layers.data(name='y', shape=[1], dtype='float32') # 定義輸出的形狀和數據類型 y_predict = fluid.layers.fc(input=x, size=1, act=None) # 鏈接輸入和輸出的全鏈接層 main_program = fluid.default_main_program() # 獲取默認/全局主函數 startup_program = fluid.default_startup_program() # 獲取默認/全局啓動程序 cost = fluid.layers.square_error_cost(input=y_predict, label=y) # 利用標籤數據和輸出的預測數據估計方差 avg_loss = fluid.layers.mean(cost) # 對方差求均值,獲得平均損失 sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_loss) #克隆main_program獲得test_program #有些operator在訓練和測試之間的操做是不一樣的,例如batch_norm,使用參數for_test來區分該程序是用來訓練仍是用來測試 #該api不會刪除任何操做符,請在backward和optimization以前使用 test_program = main_program.clone(for_test=True) use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() # 指明executor的執行場所 ###executor能夠接受傳入的program,並根據feed map(輸入映射表)和fetch list(結果獲取表)向program中添加數據輸入算子和結果獲取算子。使用close()關閉該executor,調用run(...)執行program。 exe = fluid.Executor(place) num_epochs = 100 def train_test(executor, program, reader, feeder, fetch_list): accumulated = 1 * [0] count = 0 for data_test in reader(): outs = executor.run(program=program, feed=feeder.feed(data_test), fetch_list=fetch_list) accumulated = [x_c[0] + x_c[1][0] for x_c in zip(accumulated, outs)] # 累加測試過程當中的損失值 count += 1 # 累加測試集中的樣本數量 return [x_d / count for x_d in accumulated] # 計算平均損失 %matplotlib inline params_dirname = "fit_a_line.inference.model" feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe.run(startup_program) train_prompt = "train cost" test_prompt = "test cost" from paddle.utils.plot import Ploter plot_prompt = Ploter(train_prompt, test_prompt) step = 0 exe_test = fluid.Executor(place) for pass_id in range(num_epochs): for data_train in train_reader(): avg_loss_value, = exe.run(main_program, feed=feeder.feed(data_train), fetch_list=[avg_loss]) if step % 10 == 0: # 每10個批次記錄並輸出一下訓練損失 plot_prompt.append(train_prompt, step, avg_loss_value[0]) plot_prompt.plot() print("%s, Step %d, Cost %f" % (train_prompt, step, avg_loss_value[0])) if step % 100 == 0: # 每100批次記錄並輸出一下測試損失 test_metics = train_test(executor=exe_test, program=test_program, reader=test_reader, fetch_list=[avg_loss.name], feeder=feeder) plot_prompt.append(test_prompt, step, test_metics[0]) plot_prompt.plot() print("%s, Step %d, Cost %f" % (test_prompt, step, test_metics[0])) if test_metics[0] < 10.0: # 若是準確率達到要求,則中止訓練 break step += 1 if math.isnan(float(avg_loss_value[0])): sys.exit("got NaN loss, training failed.") #保存訓練參數到以前給定的路徑中 if params_dirname is not None: fluid.io.save_inference_model(params_dirname, ['x'], [y_predict], exe) infer_exe = fluid.Executor(place) inference_scope = fluid.core.Scope() def save_result(points1, points2): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt x1 = [idx for idx in range(len(points1))] y1 = points1 y2 = points2 l1 = plt.plot(x1, y1, 'r--', label='predictions') l2 = plt.plot(x1, y2, 'g--', label='GT') plt.plot(x1, y1, 'ro-', x1, y2, 'g+-') plt.title('predictions VS GT') plt.legend() plt.savefig('./image/prediction_gt.png') with fluid.scope_guard(inference_scope): [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(params_dirname, infer_exe) # 載入預訓練模型 batch_size = 10 infer_reader = paddle.batch( paddle.dataset.uci_housing.test(), batch_size=batch_size) # 準備測試集 infer_data = next(infer_reader()) infer_feat = numpy.array( [data[0] for data in infer_data]).astype("float32") # 提取測試集中的數據 infer_label = numpy.array( [data[1] for data in infer_data]).astype("float32") # 提取測試集中的標籤 assert feed_target_names[0] == 'x' results = infer_exe.run(inference_program, feed={feed_target_names[0]: numpy.array(infer_feat)}, fetch_list=fetch_targets) # 進行預測 #打印預測結果和標籤並可視化結果 print("infer results: (House Price)") for idx, val in enumerate(results[0]): print("%d: %.2f" % (idx, val)) # 打印預測結果 print("\nground truth:") for idx, val in enumerate(infer_label): print("%d: %.2f" % (idx, val)) # 打印標籤值 save_result(results[0], infer_label) # 保存圖片
把代碼複製進去api
點擊運行查看效果: app