本次做業來源於:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2822html
中文詞頻統計app
1. 下載一長篇中文小說。dom
2. 從文件讀取待分析文本。url
# -*- coding: utf-8 -*- import struct import os # 拼音表偏移, startPy = 0x1540; # 漢語詞組表偏移 startChinese = 0x2628; # 全局拼音表 GPy_Table = {} # 解析結果 # 元組(詞頻,拼音,中文詞組)的列表 # 原始字節碼轉爲字符串 def byte2str(data): pos = 0 str = '' while pos < len(data): c = chr(struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]) if c != chr(0): str += c pos += 2 return str # 獲取拼音表 def getPyTable(data): data = data[4:] pos = 0 while pos < len(data): index = struct.unpack('H', bytes([data[pos],data[pos + 1]]))[0] pos += 2 lenPy = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] pos += 2 py = byte2str(data[pos:pos + lenPy]) GPy_Table[index] = py pos += lenPy # 獲取一個詞組的拼音 def getWordPy(data): pos = 0 ret = '' while pos < len(data): index = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] ret += GPy_Table[index] pos += 2 return ret # 讀取中文表 def getChinese(data): GTable = [] pos = 0 while pos < len(data): # 同音詞數量 same = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] # 拼音索引表長度 pos += 2 py_table_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] # 拼音索引表 pos += 2 py = getWordPy(data[pos: pos + py_table_len]) # 中文詞組 pos += py_table_len for i in range(same): # 中文詞組長度 c_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] # 中文詞組 pos += 2 word = byte2str(data[pos: pos + c_len]) # 擴展數據長度 pos += c_len ext_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] # 詞頻 pos += 2 count = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0] # 保存 GTable.append((count, py, word)) # 到下個詞的偏移位置 pos += ext_len return GTable def scel2txt(file_name): print('-' * 60) with open(file_name, 'rb') as f: data = f.read() print("詞庫名:", byte2str(data[0x130:0x338])) # .encode('GB18030') print("詞庫類型:", byte2str(data[0x338:0x540])) print("描述信息:", byte2str(data[0x540:0xd40])) print("詞庫示例:", byte2str(data[0xd40:startPy])) getPyTable(data[startPy:startChinese]) getChinese(data[startChinese:]) return getChinese(data[startChinese:]) if __name__ == '__main__': # scel所在文件夾路徑 in_path = r"F:\text" #修改成你的詞庫文件存放文件夾 # 輸出詞典所在文件夾路徑 out_path = r"F:\text" # 轉換以後文件存放文件夾 fin = [fname for fname in os.listdir(in_path) if fname[-5:] == ".scel"] for f in fin: try: for word in scel2txt(os.path.join(in_path, f)): file_path=(os.path.join(out_path, str(f).split('.')[0] + '.txt')) # 保存結果 with open(file_path,'a+',encoding='utf-8')as file: file.write(word[2] + '\n') os.remove(os.path.join(in_path, f)) except Exception as e: print(e) pass
3. 生成詞雲code
import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent import re import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt def get_txt_from_net(): c_str = [] ua = UserAgent() headers = {'User_Agent': ua.random} for i in range(1,18): url = "http://t.icesmall.cn/book/53/826/"+str(i)+".html" html = requests.get(url, headers=headers) html.encoding = 'utf-8' soup = BeautifulSoup(html.text,'lxml') s = soup.find('div',id="Content").get_text() s = re.sub(r'p\{.*?\}','',s).lstrip().rstrip().strip() c_str.append(s) c_txt = ''.join(c_str) with open('Ctxt.txt','w',encoding='utf-8') as f: f.write(c_txt) def get_word_from_txt(): with open('Ctxt.txt','r',encoding='utf-8') as f: ctxt = f.read() jieba.load_userdict('people.txt') # 詞庫文本文件 stxt = jieba.lcut(ctxt) stops = open('停用詞表.txt','r',encoding='utf-8').read() stops = stops.split() tokens = [token for token in stxt if token not in stops] tokenstr = " ".join(tokens) ciyun = WordCloud(background_color = '#36f',width=400,height=300,margin = 1).generate(tokenstr) stxtword = set(tokens) stxtcount = {} for i in stxtword: if len(i) == 1: continue stxtcount[i] = tokens.count(i) stxtcount = sorted(stxtcount.items(),key=lambda key:key[1],reverse=True) stxtcount = stxtcount[:20] for i in range(20): print(stxtcount[i]) plt.imshow(ciyun) plt.axis("off") plt.show() ciyun.to_file(r'The_Kite_Runner.jpg') if __name__ == '__main__': get_txt_from_net() get_word_from_txt()
4. 更新詞庫,加入所分析對象的專業詞彙。xml