[轉]BloomFilter——大規模數據處理利器

Bloom Filter是由Bloom在1970年提出的一種多哈希函數映射的快速查找算法。一般應用在一些須要快速判斷某個元素是否屬於集合,可是並不嚴格要求100%正確的場合。html

 

. 實例java

  爲了說明Bloom Filter存在的重要意義,舉一個實例:node

  假設要你寫一個網絡蜘蛛(web crawler)。因爲網絡間的連接錯綜複雜,蜘蛛在網絡間爬行極可能會造成「環」。爲了不造成「環」,就須要知道蜘蛛已經訪問過那些URL。給一個URL,怎樣知道蜘蛛是否已經訪問過呢?稍微想一想,就會有以下幾種方案:git

  1. 將訪問過的URL保存到數據庫。github

  2. 用HashSet將訪問過的URL保存起來。那隻需接近O(1)的代價就能夠查到一個URL是否被訪問過了。web

  3. URL通過MD5或SHA-1等單向哈希後再保存到HashSet或數據庫。算法

  4. Bit-Map方法。創建一個BitSet,將每一個URL通過一個哈希函數映射到某一位。數據庫

  方法1~3都是將訪問過的URL完整保存,方法4則只標記URL的一個映射位。express

 

  以上方法在數據量較小的狀況下都能完美解決問題,可是當數據量變得很是龐大時問題就來了。apache

  方法1的缺點:數據量變得很是龐大後關係型數據庫查詢的效率會變得很低。並且每來一個URL就啓動一次數據庫查詢是否是過小題大作了?

  方法2的缺點:太消耗內存。隨着URL的增多,佔用的內存會愈來愈多。就算只有1億個URL,每一個URL只算50個字符,就須要5GB內存。

  方法3:因爲字符串通過MD5處理後的信息摘要長度只有128Bit,SHA-1處理後也只有160Bit,所以方法3比方法2節省了好幾倍的內存。

  方法4消耗內存是相對較少的,但缺點是單一哈希函數發生衝突的機率過高。還記得數據結構課上學過的Hash表衝突的各類解決方法麼?若要下降衝突發生的機率到1%,就要將BitSet的長度設置爲URL個數的100倍。

 

  實質上上面的算法都忽略了一個重要的隱含條件:容許小几率的出錯,不必定要100%準確!也就是說少許url實際上沒有沒網絡蜘蛛訪問,而將它們錯判爲已訪問的代價是很小的——大不了少抓幾個網頁唄。

 

. Bloom Filter的算法

 

  廢話說到這裏,下面引入本篇的主角——Bloom Filter。其實上面方法4的思想已經很接近Bloom Filter了。方法四的致命缺點是衝突機率高,爲了下降衝突的概念,Bloom Filter使用了多個哈希函數,而不是一個。

    Bloom Filter算法以下:

    建立一個m位BitSet,先將全部位初始化爲0,而後選擇k個不一樣的哈希函數。第i個哈希函數對字符串str哈希的結果記爲h(i,str),且h(i,str)的範圍是0到m-1 。

 

(1) 加入字符串過程

 

  下面是每一個字符串處理的過程,首先是將字符串str「記錄」到BitSet中的過程:

  對於字符串str,分別計算h(1,str),h(2,str)…… h(k,str)。而後將BitSet的第h(1,str)、h(2,str)…… h(k,str)位設爲1。

  圖1.Bloom Filter加入字符串過程

  很簡單吧?這樣就將字符串str映射到BitSet中的k個二進制位了。

 

(2) 檢查字符串是否存在的過程

 

  下面是檢查字符串str是否被BitSet記錄過的過程:

  對於字符串str,分別計算h(1,str),h(2,str)…… h(k,str)。而後檢查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否爲1,若其中任何一位不爲1則能夠斷定str必定沒有被記錄過。若所有位都是1,則「認爲」字符串str存在。

 

  若一個字符串對應的Bit不全爲1,則能夠確定該字符串必定沒有被Bloom Filter記錄過。(這是顯然的,由於字符串被記錄過,其對應的二進制位確定所有被設爲1了)

  可是若一個字符串對應的Bit全爲1,其實是不能100%的確定該字符串被Bloom Filter記錄過的。(由於有可能該字符串的全部位都恰好是被其餘字符串所對應)這種將該字符串劃分錯的狀況,稱爲false positive 。

 

(3) 刪除字符串過程

   字符串加入了就被不能刪除了,由於刪除會影響到其餘字符串。實在須要刪除字符串的可使用Counting bloomfilter(CBF),這是一種基本Bloom Filter的變體,CBF將基本Bloom Filter每個Bit改成一個計數器,這樣就能夠實現刪除字符串的功能了。

 

  Bloom Filter跟單哈希函數Bit-Map不一樣之處在於:Bloom Filter使用了k個哈希函數,每一個字符串跟k個bit對應。從而下降了衝突的機率。

 

. Bloom Filter參數選擇

 

   (1)哈希函數選擇

     哈希函數的選擇對性能的影響應該是很大的,一個好的哈希函數要能近似等機率的將字符串映射到各個Bit。選擇k個不一樣的哈希函數比較麻煩,一種簡單的方法是選擇一個哈希函數,而後送入k個不一樣的參數。

   (2)Bit數組大小選擇

     哈希函數個數k、位數組大小m、加入的字符串數量n的關係能夠參考參考文獻1。該文獻證實了對於給定的m、n,當 k = ln(2)* m/n 時出錯的機率是最小的。

     同時該文獻還給出特定的k,m,n的出錯機率。例如:根據參考文獻1,哈希函數個數k取10,位數組大小m設爲字符串個數n的20倍時,false positive發生的機率是0.0000889 ,這個機率基本能知足網絡爬蟲的需求了。 

 

. Bloom Filter實現代碼

    下面給出一個簡單的Bloom Filter的Java實現代碼:

 

複製代碼
import java.util.BitSet;
publicclass BloomFilter { /* BitSet初始分配2^24個bit */privatestaticfinalint DEFAULT_SIZE =1<<25; /* 不一樣哈希函數的種子,通常應取質數 */privatestaticfinalint[] seeds =newint[] { 5, 7, 11, 13, 31, 37, 61 }; private BitSet bits =new BitSet(DEFAULT_SIZE); /* 哈希函數對象 */private SimpleHash[] func =new SimpleHash[seeds.length];
public BloomFilter() { for (int i =0; i < seeds.length; i++) { func[i] =new SimpleHash(DEFAULT_SIZE, seeds[i]); } }
// 將字符串標記到bits中publicvoid add(String value) { for (SimpleHash f : func) { bits.set(f.hash(value), true); } }
//判斷字符串是否已經被bits標記publicboolean contains(String value) { if (value ==null) { returnfalse; } boolean ret =true; for (SimpleHash f : func) { ret = ret && bits.get(f.hash(value)); } return ret; }
/* 哈希函數類 */publicstaticclass SimpleHash { privateint cap; privateint seed;
public SimpleHash(int cap, int seed) { this.cap = cap; this.seed = seed; }
//hash函數,採用簡單的加權和hashpublicint hash(String value) { int result =0; int len = value.length(); for (int i =0; i < len; i++) { result = seed * result + value.charAt(i); } return (cap -1) & result; } } }
複製代碼

 

 

 

參考文獻:

 

[1]Pei Cao. Bloom Filters - the math.

http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html

[2]Wikipedia. Bloom filter.

http://en.wikipedia.org/wiki/Bloom_filter

 

Google Guava的Bloom filter實現

/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import com.google.common.hash.BloomFilterStrategies.BitArray;

import java.io.Serializable;

/**
* A Bloom filter for instances of {@code T}. A Bloom filter offers an approximate containment test
* with one-sided error: if it claims that an element is contained in it, this might be in error,
* but if it claims that an element is <i>not</i> contained in it, then this is definitely true.
*
* <p>If you are unfamiliar with Bloom filters, this nice
* <a href="http://llimllib.github.com/bloomfilter-tutorial/">tutorial</a> may help you understand
* how they work.
*
* @param <T> the type of instances that the {@code BloomFilter} accepts
* @author Kevin Bourrillion
* @author Dimitris Andreou
* @since 11.0
*/
@Beta
public final class BloomFilter<T> implements Serializable {
/**
* A strategy to translate T instances, to {@code numHashFunctions} bit indexes.
*/
interface Strategy extends java.io.Serializable {
/**
* Sets {@code numHashFunctions} bits of the given bit array, by hashing a user element.
*/
<T> void put(T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits);

/**
* Queries {@code numHashFunctions} bits of the given bit array, by hashing a user element;
* returns {@code true} if and only if all selected bits are set.
*/
<T> boolean mightContain(
T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits);
}

/** The bit set of the BloomFilter (not necessarily power of 2!)*/
private final BitArray bits;

/** Number of hashes per element */
private final int numHashFunctions;

/** The funnel to translate Ts to bytes */
private final Funnel<T> funnel;

/**
* The strategy we employ to map an element T to {@code numHashFunctions} bit indexes.
*/
private final Strategy strategy;

/**
* Creates a BloomFilter.
*/
private BloomFilter(BitArray bits, int numHashFunctions, Funnel<T> funnel,
Strategy strategy) {
Preconditions.checkArgument(numHashFunctions > 0, "numHashFunctions zero or negative");
this.bits = checkNotNull(bits);
this.numHashFunctions = numHashFunctions;
this.funnel = checkNotNull(funnel);
this.strategy = strategy;
}

/**
* Returns {@code true} if the element <i>might</i> have been put in this Bloom filter,
* {@code false} if this is <i>definitely</i> not the case.
*/
public boolean mightContain(T object) {
return strategy.mightContain(object, funnel, numHashFunctions, bits);
}

/**
* Puts an element into this {@code BloomFilter}. Ensures that subsequent invocations of
* {@link #mightContain(Object)} with the same element will always return {@code true}.
*/
public void put(T object) {
strategy.put(object, funnel, numHashFunctions, bits);
}

@VisibleForTesting int getHashCount() {
return numHashFunctions;
}

@VisibleForTesting double computeExpectedFalsePositiveRate(int insertions) {
return Math.pow(
1 - Math.exp(-numHashFunctions * ((double) insertions / (bits.size()))),
numHashFunctions);
}

/**
* Creates a {@code Builder} of a {@link BloomFilter BloomFilter<T>}, with the expected number
* of insertions and expected false positive probability.
*
* <p>Note that overflowing a {@code BloomFilter} with significantly more elements
* than specified, will result in its saturation, and a sharp deterioration of its
* false positive probability.
*
* <p>The constructed {@code BloomFilter<T>} will be serializable if the provided
* {@code Funnel<T>} is.
*
* @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use
* @param expectedInsertions the number of expected insertions to the constructed
* {@code BloomFilter<T>}; must be positive
* @param falsePositiveProbability the desired false positive probability (must be positive and
* less than 1.0)
* @return a {@code Builder}
*/
public static <T> BloomFilter<T> create(Funnel<T> funnel, int expectedInsertions /* n */,
double falsePositiveProbability) {
checkNotNull(funnel);
checkArgument(expectedInsertions > 0, "Expected insertions must be positive");
checkArgument(falsePositiveProbability > 0.0 & falsePositiveProbability < 1.0,
"False positive probability in (0.0, 1.0)");
/*
* andreou: I wanted to put a warning in the javadoc about tiny fpp values,
* since the resulting size is proportional to -log(p), but there is not
* much of a point after all, e.g. optimalM(1000, 0.0000000000000001) = 76680
* which is less that 10kb. Who cares!
*/
int numBits = optimalNumOfBits(expectedInsertions, falsePositiveProbability);
int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
return new BloomFilter<T>(new BitArray(numBits), numHashFunctions, funnel,
BloomFilterStrategies.MURMUR128_MITZ_32);
}

/**
* Creates a {@code Builder} of a {@link BloomFilter BloomFilter<T>}, with the expected number
* of insertions, and a default expected false positive probability of 3%.
*
* <p>Note that overflowing a {@code BloomFilter} with significantly more elements
* than specified, will result in its saturation, and a sharp deterioration of its
* false positive probability.
*
* <p>The constructed {@code BloomFilter<T>} will be serializable if the provided
* {@code Funnel<T>} is.
*
* @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use
* @param expectedInsertions the number of expected insertions to the constructed
* {@code BloomFilter<T>}; must be positive
* @return a {@code Builder}
*/
public static <T> BloomFilter<T> create(Funnel<T> funnel, int expectedInsertions /* n */) {
return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
}

/*
* Cheat sheet:
*
* m: total bits
* n: expected insertions
* b: m/n, bits per insertion

* p: expected false positive probability
*
* 1) Optimal k = b * ln2
* 2) p = (1 - e ^ (-kn/m))^k
* 3) For optimal k: p = 2 ^ (-k) ~= 0.6185^b
* 4) For optimal k: m = -nlnp / ((ln2) ^ 2)
*/

private static final double LN2 = Math.log(2);
private static final double LN2_SQUARED = LN2 * LN2;

/**
* Computes the optimal k (number of hashes per element inserted in Bloom filter), given the
* expected insertions and total number of bits in the Bloom filter.
*
* See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula.
*
* @param n expected insertions (must be positive)
* @param m total number of bits in Bloom filter (must be positive)
*/
@VisibleForTesting static int optimalNumOfHashFunctions(int n, int m) {
return Math.max(1, (int) Math.round(m / n * LN2));
}

/**
* Computes m (total bits of Bloom filter) which is expected to achieve, for the specified
* expected insertions, the required false positive probability.
*
* See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the formula.
*
* @param n expected insertions (must be positive)
* @param p false positive rate (must be 0 < p < 1)
*/
@VisibleForTesting static int optimalNumOfBits(int n, double p) {
return (int) (-n * Math.log(p) / LN2_SQUARED);
}

private Object writeReplace() {
return new SerialForm<T>(this);
}

private static class SerialForm<T> implements Serializable {
final long[] data;
final int numHashFunctions;
final Funnel<T> funnel;
final Strategy strategy;

SerialForm(BloomFilter<T> bf) {
this.data = bf.bits.data;
this.numHashFunctions = bf.numHashFunctions;
this.funnel = bf.funnel;
this.strategy = bf.strategy;
}
Object readResolve() {
return new BloomFilter<T>(new BitArray(data), numHashFunctions, funnel, strategy);
}
private static final long serialVersionUID = 1;
}
}

  

 

本質是BitSet,適用可容忍必定錯誤的場景,優點是高效、佔用空間小;

3億個KEY,每一個實例映射1W KEY,須要3W個實例,佔用空間約600M。

相關文章
相關標籤/搜索