JavaShuo
欄目
標籤
Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction
時間 2021-01-13
標籤
推薦系統
人工智能
序列建模
行爲分析
简体版
原文
原文鏈接
本文主要記錄了這篇文章的主要方法和貢獻,以及個人的一些思考和想法,歡迎討論! 最開始是在語雀寫的,導出後可能格式有點問題,歡迎移步語雀: https://www.yuque.com/docs/share/fee366de-68ba-4254-9a57-cccfe3edd356?# Alibaba, KDD 2019 https://arxiv.org/abs/1905.09248 Cont
>>阅读原文<<
相關文章
1.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
2.
ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation 詳解
3.
What’s a Good Clickthrough Rate? New Benchmark Data for Google AdWords
4.
《User Modeling with Neural Network for Review Rating Prediction》評論打分預測
5.
#Paper Reading# Deep Interest Network for Click-Through Rate Prediction
6.
Deep Interest Network for Click-Through Rate Prediction
7.
論文Disguise Adversarial Networks for Click-through Rate Prediction
8.
IJCAI 2018 Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic
9.
Controllable Multi-Interest Framework for Recommendation
10.
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(六)Utility
相關標籤/搜索
sequential
modeling
prediction
long
rate
practice
behavior
user
5.rate
unity+behavior
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
2.
ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation 詳解
3.
What’s a Good Clickthrough Rate? New Benchmark Data for Google AdWords
4.
《User Modeling with Neural Network for Review Rating Prediction》評論打分預測
5.
#Paper Reading# Deep Interest Network for Click-Through Rate Prediction
6.
Deep Interest Network for Click-Through Rate Prediction
7.
論文Disguise Adversarial Networks for Click-through Rate Prediction
8.
IJCAI 2018 Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamic
9.
Controllable Multi-Interest Framework for Recommendation
10.
『 DSSM』A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
>>更多相關文章<<