十大基本排序

前言

忙裏偷閒,順手整理一下十大排排序算法。java

冒泡排序

步驟說明:

  • 1.比較相鄰的2個元素,若是第一個比第二個大,就交換他們的位置。
  • 2.對每一對相鄰元素作一樣的操做,從開始第一對到結尾的最後一對,這步驟完成後,最後的元素會是最大的元素。
  • 3.持續每次對愈來愈少的元素重複上面的步驟,直到沒有任何一對數字須要比較。

代碼示例

public class BubbleSort extends BaseSort {

    public BubbleSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        for (int i = 0; i < arr.length; i++) {
            for (int j = 0; j < arr.length - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    super.swap(arr, j, j + 1);
                }
            }
        }
        return arr;
    }
}

選擇排序

步驟說明:

  • 1.首先在未排序的序列中找到最小/大的元素,存放到排序序列的起始位置。
  • 2.再從剩餘未排序元素中繼續尋找最小/大的元素,而後放到已排序序列的末尾。
  • 3.重複2步驟,知道全部元素均排序完畢.

代碼示例

public class SelectionSort extends BaseSort {


    public SelectionSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        //總共要進行n-1次比較
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    //記錄最小元素下標
                    min = j;
                }
            }
            //交換最小值和i的位圖
            if (i != min) {
                swap(arr, i, min);
            }
        }
        return arr;
    }
}

插入排序

步驟說明:

  • 1.將第一待排序序列的第一個元素看作是一個有序的序列,把第二個元素到最後一個元素當成是未排序的序列。
  • 2.從頭至尾依次掃描未排序的序列,將掃描到的每一個元素插入有序序列的適當位置,
  • 3.若是待插入的元素與有序序列中的某個元素相等,則將待插入的元素插入到相等元素的後面。

代碼示例

public class InsertSort extends BaseSort {

    public InsertSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {

        for (int i = 1; i < arr.length; i++) {
            int tmp = arr[i];
            int j = i;

            while (j > 0 && tmp < arr[j - 1]) {
                arr[j] = arr[j -1];
                j--;
            }

            if (j != i) {
                arr[j] = tmp;
            }
        }
        return arr;
    }
}

希爾排序

步驟說明:

  • 1.選擇一個增量序列,t1, t2, ....... , tk,其中 ti>tj, tk = 1
  • 2.按增量序列個數k,對序列進行k躺排序。
  • 3.每趟排序,根據對應的增量ti, 將待排序列分割成若干長度爲m的子序列,分別對各子表進行直接插入排序,僅增量因子爲1時,整個序列做爲一個表來處理,表長度即爲整個序列的長度。

代碼示例

public class ShellSort extends BaseSort {

    public ShellSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        int gap = 1;
        while (gap < arr.length) {
            gap = gap * 3 + 1;
        }
        while (gap > 0) {
            for (int i = 0; i < arr.length; i++) {
                int temp = arr[i];
                int j = i - gap;

                while (j >= 0 && arr[j] > temp) {
                    arr[j + gap] = arr[j];
                    j -= gap;
                }
                arr[j + gap] = temp;
            }
            gap = (int) Math.floor(gap / 3);
        }
        return arr;
    }
}

歸併排序

步驟說明:

  • 1.申請空間,使其大小爲兩個已經排序序列之和,該空間用來存放合併後的序列。
  • 2.設定兩個指針,最初位置分別爲兩個已經排序序列的起始位置。
  • 3.比較兩個指針所指向的元素,選擇相對小的元素放入到合併空間,並移動指針到下一個位置。
  • 4.重複步驟3直到某一指針達到序列尾部。
  • 5.將另外一個序列剩下的全部元素直接複製到合併隊列的尾部。

代碼示例

public class MergeSort extends BaseSort{

    public MergeSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        return mergeSort(arr);
    }

    public int[] mergeSort(int[] nums) {
        if (nums.length < 2) {
            return nums;
        }
        int middle = (int) Math.floor(nums.length / 2);
        int[] left = Arrays.copyOfRange(nums, 0, middle);
        int[] right = Arrays.copyOfRange(nums, middle, nums.length);
        return merge(mergeSort(left), mergeSort(right));
    }

    private int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        int i = 0;
        while (left.length > 0 && right.length > 0) {
            if (left[0] <= right[0]) {
                result[i++] = left[0];
                left = Arrays.copyOfRange(left, 1 , left.length);
            } else {
                result[i++] = right[0];
                right = Arrays.copyOfRange(right, 1, right.length);
            }
        }

        while (left.length > 0) {
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }

        while (right.length > 0) {
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }
        return result;
    }
}

快速排序

步驟說明:

  • 1.從數列中挑出一個元素,稱爲基準(pivot)。
  • 2.從新排序數列,全部元素比基準小的,所有放到基準前邊,比基準大的所有放到基準後面(若是與基準相等,能夠放到任意一邊)。在這個分區退出以後,該基準就處於數列的中間位置,也就是分區操做,每一個分區被稱作一個 partition
  • 3.遞歸排序兩個 partition

代碼示例

public class QuickSort extends BaseSort {

    public QuickSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        return quickSort(arr, 0, arr.length - 1);
    }

    public int[] quickSort(int[] nums, int left, int right) {
        if (left < right) {
            int partition = partition(nums, left, right);
            quickSort(nums, left, partition - 1);
            quickSort(nums, partition + 1, right);
        }
        return nums;
    }

    public int partition(int[] nums, int left, int right) {
        int pivot = left;
        int index = pivot + 1;
        for (int i = index; i <= right; i++) {
            if (nums[i] < nums[pivot]) {
                swap(nums, i, index);
                index++;

            }
        }
        swap(nums, pivot, index - 1);
        return index - 1;
    }
}

堆排序

步驟說明:

  • 1.建立一個heap, H[0....n-1] .
  • 2.把堆首(最大值)和堆尾互換。
  • 3.把堆的大小縮小1,並調用 shift_down(0) ,目的是把新的數組頂端數據調整到相應的位置。
  • 4.重複步驟2,直到到堆的大小變爲1。

代碼示例

public class HeapSort extends BaseSort {

    public HeapSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        int len = arr.length;
        bulidMaxHeap(arr, len);
        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
        return arr;
    }

    public void bulidMaxHeap(int[] nums, int len) {
        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
            heapify(nums, i, len);
        }
    }

    private void heapify(int[] nums, int i, int len) {
        int left = (2 * i) + 1;
        int right = (2 * i) + 2;

        int last = i;
        if (left < len && nums[left] > nums[last]) {
            last = left;
        }
        if (right < len && nums[right] > nums[last]) {
            last = right;
        }
        if (last != i) {
            swap(nums, i, last);

            heapify(nums, last, len);
        }
    }
}

計數排序

步驟說明:

  • 1.在 O(n) 的時間掃描一下整個序列 a,找到序列中最大值 max 和最小值 min
  • 2.開闢一塊新的空間建立新的數組 b*,長度爲 max-min+1
  • 3.數字 b 中的 index 的元素記錄的值是a中元素的出現次數。
  • 4.最後輸出目標整數序列,具體的邏輯是遍歷數組b,輸出相應元素以及對應的個數。

代碼示例

public class CountSort extends BaseSort{
    public CountSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        return countSort(arr, getMaxValue(arr));
    }

    public int[] countSort(int[] nums, int max) {
        int bucketLen = max + 1;
        int[] bucket = new int[bucketLen];
        for (int i : nums) {
            bucket[i]++;
        }
        int sortedIndex = 0;
        for (int i = 0; i < bucketLen; i++) {
            while (bucket[i] > 0) {
                nums[sortedIndex++] = i;
                bucket[i]--;
            }
        }
        return nums;
    }

    public int getMaxValue(int[] nums) {
        int maxValue = arr[0];
        for (int i : nums) {
            if (maxValue < i) {
                maxValue = i;
            }
        }
        return maxValue;
    }
}

桶排序

步驟說明:

  • 1.設置固定數量的空桶。
  • 2.把數據放到對應的桶中。
  • 3.對每一個不爲空的桶進行排序。
  • 4.拼接不爲空的桶的數據。

代碼示例

public class BucketSort extends BaseSort {
    public BucketSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        return bucketSort(arr, 5);
    }

    public int[] bucketSort(int[] nums, int bucketSize) {
        if (nums.length == 0) {
            return nums;
        }
        int maxValue = nums[0];
        int minValue = nums[0];

        for (int i : nums) {
            if (i < minValue) {
                minValue = i;
            } else if (i > maxValue) {
                maxValue = i;
            }
        }

        int bucketCount = (int) (Math.floor((maxValue - minValue) / bucketSize) + 1);
        int[][] buckets = new int[bucketCount][0];

        for (int i = 0; i < nums.length; i++) {
            int index = (int) Math.floor((nums[i] - minValue) / bucketCount);
            buckets[index] = appendBucket(buckets[index], nums[i]);
        }

        int arrIndex = 0;
        for (int[] bucket : buckets) {
            if (bucket.length <= 0) {
                continue;
            }
            //對每一個桶進行插入排序
            InsertSort insertSort = new InsertSort(bucket);
            bucket = insertSort.sort();
            for (int i : bucket) {
                nums[arrIndex++] = i;
            }
        }
        return nums;
    }

    /**
     * 自動擴容並保存數據
     * @param bucket
     * @param num
     * @return
     */
    private int[] appendBucket(int[] bucket, int num) {
        bucket = Arrays.copyOf(bucket, bucket.length + 1);
        bucket[bucket.length - 1] = num;
        return bucket;
    }
}

計數排序

步驟說明:

  • 1.將全部待比較數值(正整數)統一爲一樣的數位長度,數位較短的數據前面補零。
  • 2.從最低位開始,依次進行一次排序。
  • 3.從最低位排序一直到最高位排序完成之後,數列就變成一個有序序列。

代碼示例

public class RadixSort extends BaseSort{

    public RadixSort(int[] nums) {
        super(nums);
    }

    @Override
    public int[] sort() {
        return radixSort(arr, getMaxDigit(arr));
    }

    public int[] radixSort(int[] nums, int maxDigit) {
        int mod = 10;
        int dev = 1;
        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < nums.length; j++) {
                int bucket = ((nums[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], nums[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    nums[pos++] = value;
                }
            }

        }
        return nums;
    }

    private int[] arrayAppend(int[] ints, int num) {
        ints = Arrays.copyOf(ints, ints.length + 1);
        ints[ints.length - 1] = num;
        return ints;
    }

    /**
     * 獲取最高位數
     * @param nums
     * @return
     */
    public int getMaxDigit(int[] nums) {
        int maxValue = getMaxValue(nums);
        return getNumLenght(maxValue);
    }

    private int getNumLenght(int maxValue) {
        if (maxValue == 0) {
            return 1;
        }
        int length = 0;
        for (long tmp = maxValue; tmp != 0; tmp /= 10) {
            length++;
        }
        return length;
    }

    private int getMaxValue(int[] nums) {
        int maxValue = nums[0];
        for (int i : nums) {
            if (maxValue < i) {
                maxValue = i;
            }
        }
        return maxValue;
    }
}

BaseSort類

public abstract class BaseSort {

    protected int[] arr;

    public BaseSort(int[] nums) {
        arr = Arrays.copyOf(nums, nums.length);
    }

    public void swap(int[] nums, int a, int b) {
        int temp = nums[a];
        nums[a] = nums[b];
        nums[b] = temp;
    }

    public void execute() {
        long t1 = System.currentTimeMillis();
        int[] a = sort();
        System.out.println("耗時啊:" + (System.currentTimeMillis() - t1) + "ms");
        print(a);
    }


    private void print(int[] a) {
        for (int i = 0; i < a.length; i++) {
            System.out.println(a[i]);
        }
    }

    public abstract int[] sort();
}

總結

排序算法能夠分爲內部排序和外部排序兩種。
  • 內部排序:是指數據在內存中進行排序。
  • 外部排序:因排序數據很大,一次不能排序全部記錄,在排序過程當中要訪問外存。
排序算法 平均時間複雜度 最好狀況 最壞狀況 空間複雜度 排序方式 穩定性
冒泡排序 $O(n^2)$ $O(n)$ $O(n^2)$ $O(1)$ In-place 穩定
選擇排序 $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(1)$ In-place 不穩定
插入排序 $O(n^2)$ $O(n)$ $O(n^2)$ $O(1)$ In-place 穩定
希爾排序 $O(n log n)$ $O(n log^2 n)$ $O(n log^2 n$) $O(1)v In-place 不穩定
歸併排序 $O(n log n)$ $O(n log n)$ $O(n log n)$ $O(n)$ Out-place 穩定
快速排序 $O(n log n)$ $O(n log n)$ $O(n^2)$ $O(log n)$ In-place 不穩定
堆排序 $O(n log n)$ $O(n log n)$ $O(n log n)$ $O(1)$ In-place 不穩定
計數排序 $O(n + k)$ $O(n + k)$ $O(n + k)$ $O(k)$ Out-place 穩定
桶排序 $O(n + k)$ $O(n + k)$ $O(n^2)$ $O(n + k)$ Out-place 穩定
基數排序 $O(n * k)$ $O(n * k)$ $O(n * k)$ $O(n + k)$ Out-place 穩定

  • 寫做不易,轉載請註明出處,喜歡的小夥伴能夠關注公衆號查看更多喜歡的文章。
  • 聯繫方式:4272231@163.com
  • QQ:95472323
  • 微信:ffj2000
相關文章
相關標籤/搜索