input friends relations{{1,2}, {2,3}, {3,4}}
把人分紅兩撥,每撥人互相不認識,
因此應該是group1{1,3}, group2{2,4}
這道題應該是how to bipartite a graphjava
Taken from GeeksforGeeksthis
Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS) :-spa
Also, NOTE :-code
-> It is possible to color a cycle graph with even cycle using two colors.component
-> It is not possible to color a cycle graph with odd cycle using two colors.orm
EDIT :-blog
If a graph is not connected, it may have more than one bipartition. You need to check all those components separately with the algorithm as mentioned above.ip
So, for various disconnected sub-graph of the same graph, you need to perform this bipartition check on all of them separately using the same algorithm discussed above. All of those various disconnected sub-graph of the same graph will account for its own set of bipartition.get
And, the graph will be termed bipartite, IF AND ONLY IF, each of its connected components are proved to be bipartite .input
1 package fbOnsite; 2 3 import java.util.*; 4 5 public class Bipartite { 6 HashSet<Integer> list1 = new HashSet<Integer>(); 7 HashSet<Integer> list2 = new HashSet<Integer>(); 8 9 public void bfs(int[][] relations) { 10 HashMap<Integer, HashSet<Integer>> graph = new HashMap<Integer, HashSet<Integer>>(); 11 for (int[] each : relations) { 12 if (!graph.containsKey(each[0])) 13 graph.put(each[0], new HashSet<Integer>()); 14 if (!graph.containsKey(each[1])) 15 graph.put(each[1], new HashSet<Integer>()); 16 graph.get(each[0]).add(each[1]); 17 graph.get(each[1]).add(each[0]); 18 } 19 20 21 Queue<Integer> queue = new LinkedList<Integer>(); 22 queue.offer(relations[0][0]); 23 list1.add(relations[0][0]); 24 HashSet<Integer> visited = new HashSet<Integer>(); 25 visited.add(relations[0][0]); 26 int count = 1; 27 while (!queue.isEmpty()) { 28 int size = queue.size(); 29 for (int i=0; i<size; i++) { 30 int person = queue.poll(); 31 HashSet<Integer> friends = graph.get(person); 32 for (int each : friends) { 33 if (list1.contains(each)&&list1.contains(person) || list2.contains(each)&&list2.contains(person)) { 34 list1.clear(); 35 list2.clear(); 36 return; 37 } 38 39 if (!visited.contains(each)) { 40 if (count%2 == 1) list2.add(each); 41 else list1.add(each); 42 queue.offer(each); 43 visited.add(each); 44 } 45 } 46 } 47 count++; 48 } 49 } 50 51 52 53 /** 54 * @param args 55 */ 56 public static void main(String[] args) { 57 // TODO Auto-generated method stub 58 Bipartite sol = new Bipartite(); 59 int[][] relations1 = new int[][]{{1,2},{2,3},{3,4}}; 60 int[][] relations2 = new int[][]{{1,2},{1,4},{1,6},{1,8},{2,3},{3,4},{3,6},{2,5},{4,5},{5,6},{5,8}}; 61 int[][] relations3 = new int[][]{{1,2},{2,3},{3,1}}; 62 sol.bfs(relations2); 63 System.out.println(sol.list1); 64 System.out.println(sol.list2); 65 } 66 67 }