Go學習之Channel的一些模式

除了在goroutine之間安全的傳遞數據以外,在看了《Concurrency in Go》以後,感慨channel還有那麼多模式可供使用,在我的的學習中總結了如下幾種經常使用的模式sql

pipeline

概念

咱們以爬蟲爲例,通常爬蟲分爲以下步驟:安全

抓取頁面 -> 解析頁面 -> 整合數據分析 -> 分析結果入庫函數

若是你把上面全部的步驟都放在一個函數裏面處理,那會是多難看,多難以維護,從解耦角度考慮,咱們能夠起四個進程,分別承擔不一樣的角色,例如,進程1負責抓取頁面, 進程2負責解析頁面,等等,各個進程拿到一個數據後,交給下一個進程來處理,這就是pipeline的基本思想,每一個角色只負責關心本身的東西學習

示例

給定一個數n,執行 (n2 + 1) 2的操做code

func pipeline() {
    generator := func(done chan interface{}, intergers ...int) <-chan int {
        inStream := make(chan int)
        go func() {
            defer close(inStream)
            for _, i := range intergers {
                select {
                case <-done:
                    return
                case inStream <- i:
                }
            }
        }()
        return inStream
    }

    add := func(done <-chan interface{}, inStream <-chan int, increment int) <-chan int {
        addInStream := make(chan int)
        go func() {
            defer close(addInStream)
            for i := range inStream {
                select {
                case <-done:
                    return
                case addInStream <- i + increment:
                }
            }
        }()
        return addInStream
    }

    multiply := func(done <-chan interface{}, inStream <-chan int, increment int) <-chan int {
        multiplyInStream := make(chan int)
        go func() {
            defer close(multiplyInStream)
            for i := range inStream {
                select {
                case <-done:
                    return
                case multiplyInStream <- i * increment:
                }
            }
        }()
        return multiplyInStream
    }

    done := make(chan interface{})
    defer close(done)
    inStream := generator(done, []int{1, 2, 3, 4, 5, 6, 7}...)
    pipeline := multiply(done, add(done, multiply(done, inStream, 2), 1), 2)

    for v := range pipeline {
        fmt.Println(v)
    }
}

扇入扇出

在pipeline模型中,是一種高效的流式處理,可是假如pipeline中有a,b,c三個環節,b環節處理的特別慢,這時候就會影響到c環節的處理,若是增長b環節進程處理的數量,也就能夠減弱b環節的慢處理對整個pipeline的影響,那麼a->多個b的過程就是 扇入, 多個b環節輸出數據到c環節,就是扇出進程

示例

func FanInFanOut() {
    producer := func(intergers ...int) <-chan interface{} {
        inStream := make(chan interface{})
        go func() {
            defer close(inStream)
            for _, v := range intergers {
                time.Sleep(5 * time.Second)
                inStream <- v
            }
        }()
        return inStream
    }

    fanIn := func(channels ...<-chan interface{},
    ) <-chan interface{} {
        var wg sync.WaitGroup
        multiplexStream := make(chan interface{})

        multiplex := func(c <-chan interface{}) {
            defer wg.Done()
            for i := range c {
                multiplexStream <- i
            }
        }

        wg.Add(len(channels))
        for _, c := range channels {
            go multiplex(c)
        }
        go func() {
            wg.Wait()
            close(multiplexStream)
        }()
        return multiplexStream
    }

    consumer := func(inStream <-chan interface{}) {
        for v := range inStream {
            fmt.Println(v)
        }
    }

    nums := runtime.NumCPU()
    producerStreams := make([]<-chan interface{}, nums)
    for i := 0; i < nums; i++ {
        producerStreams[i] = producer(i)
    }

    consumer(fanIn(producerStreams...))
}

tee- channel

概念

假如你從channel中拿到了一條sql語句,這時候,你想對這條sql記錄,分析並執行,那你就須要將這條sql分別轉發給這三個任務對應的channel,tee-channel 就是作這個事情的ip

示例

func teeChannel() {
    producer := func(intergers ...int) <-chan interface{} {
        inStream := make(chan interface{})
        go func() {
            defer close(inStream)
            for _, v := range intergers {
                inStream <- v
            }
        }()
        return inStream
    }
    tee := func(in <-chan interface{}) (_, _ <-chan interface{}) {
        out1 := make(chan interface{})
        out2 := make(chan interface{})
        go func() {
            defer close(out1)
            defer close(out2)

            for val := range in {
                out1, out2 := out1, out2
                for i := 0; i < 2; i++ {
                    select {
                    case out1 <- val:
                        out1 = nil
                    case out2 <- val:
                        out2 = nil
                    }
                }
            }
        }()
        return out1, out2
    }

    out1, out2 := tee(producer(1, 2, 3, 4, 5))
    for val1 := range out1 {
        fmt.Printf("out1: %v, out2: %v", val1, <-out2)
    }
}

橋接channel

概念

不管是前面提到的pipeline仍是扇入扇出,每一個goroutine都是對一個channel進行消費,可是實際場景中,可能會有多個channel來供給咱們消費,而做爲消費者,咱們不關心這些值是來自於哪一個channel,這種狀況下,處理一個充滿channel的channel可能會不少。若是咱們定義一個功能,能夠將充滿channel的channel拆解爲一個簡單的channel,這將使消費者更專一於手頭的工做,這就是橋接channel的思想rem

示例

func bridge() {
    gen := func() <-chan <-chan interface{} {
        in := make(chan (<-chan interface{}))
        go func() {
            defer close(in)
            for i := 0; i < 10; i++ {
                stream := make(chan interface{}, 1)
                stream <- i
                close(stream)
                in <- stream
            }
        }()
        return in
    }

    bridge := func(in <-chan (<-chan interface{})) <-chan interface{} {
        valStream := make(chan interface{})
        go func() {
            defer close(valStream)
            for {
                stream := make(<-chan interface{})
                select {
                case maybeStream, ok := <-in:
                    if ok == false {
                        return
                    }
                    stream = maybeStream
                }
                for val := range stream {
                    valStream <- val
                }
            }
        }()
        return valStream
    }

    for val := range bridge(gen()) {
        fmt.Println(val)
    }
}
相關文章
相關標籤/搜索