博客連接深刻理解GCD之dispatch_groupbash
以前已經介紹了dispatch_semaphore
的底層實現,dispatch_group
的實現是基於前者的。在看源碼以前,咱們先看一下咱們是如何應用的。假設有這麼場景:有一個A耗時操做,B和C兩個網絡請求和一個耗時操做C當ABC都執行完成後,刷新頁面。咱們能夠用dispatch_group
實現。關鍵以下:網絡
- (void)viewDidLoad {
[super viewDidLoad];
__block NSInteger number = 0;
dispatch_group_t group = dispatch_group_create();
//A耗時操做
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(3);
number += 2222;
});
//B網絡請求
dispatch_group_enter(group);
[self sendRequestWithCompletion:^(id response) {
number += [response integerValue];
dispatch_group_leave(group);
}];
//C網絡請求
dispatch_group_enter(group);
[self sendRequestWithCompletion:^(id response) {
number += [response integerValue];
dispatch_group_leave(group);
}];
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"%zd", number);
});
}
- (void)sendRequestWithCompletion:(void (^)(id response))completion {
//模擬一個網絡請求
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_async(queue, ^{
sleep(2);
dispatch_async(dispatch_get_main_queue(), ^{
if (completion) completion(@1111);
});
});
}
複製代碼
接下來咱們根據上面的流程來看一下dispatch_group的相關APIapp
dispatch_group_t
dispatch_group_create(void)
{
return (dispatch_group_t)dispatch_semaphore_create(LONG_MAX);
}
複製代碼
dispatch_group_create
其實就是建立了一個value
爲LONG_MAX
的dispatch_semaphore
信號量異步
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
複製代碼
dispatch_group_async
只是dispatch_group_async_f
的封裝async
void
dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
dispatch_function_t func)
{
dispatch_continuation_t dc;
_dispatch_retain(dg);
dispatch_group_enter(dg);
dc = fastpath(_dispatch_continuation_alloc_cacheonly());
if (!dc) {
dc = _dispatch_continuation_alloc_from_heap();
}
dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
dc->dc_func = func;
dc->dc_ctxt = ctxt;
dc->dc_group = dg;
// No fastpath/slowpath hint because we simply don't know if (dq->dq_width != 1 && dq->do_targetq) { return _dispatch_async_f2(dq, dc); } _dispatch_queue_push(dq, dc); } 複製代碼
從上面的代碼咱們能夠看出dispatch_group_async_f
和dispatch_async_f
類似。dispatch_group_async_f
多了dispatch_group_enter(dg);
,另外在do_vtable
的賦值中dispatch_group_async_f
多了一個DISPATCH_OBJ_GROUP_BIT
的標記符。既然添加了dispatch_group_enter
一定會存在dispatch_group_leave
。在以前《深刻理解GCD之dispatch_queue》介紹_dispatch_continuation_pop
函數的源碼中有一段代碼以下:函數
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
if (dg) {
//group須要進行調用dispatch_group_leave並釋放信號
dispatch_group_leave(dg);
_dispatch_release(dg);
}
複製代碼
因此dispatch_group_async_f
函數中的dispatch_group_leave
是在_dispatch_continuation_pop
函數中調用的。post
這裏歸納一下dispatch_group_async_f
的工做流程:ui
dispatch_group_enter
;dispatch_continuation_t
結構體中,並將它加入到group的鏈表中;_dispatch_continuation_pop
執行時會判斷任務是否爲group,是的話執行完任務再調用dispatch_group_leave
以達到信號量的平衡。void
dispatch_group_enter(dispatch_group_t dg)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
(void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
}
複製代碼
dispatch_group_enter
將dispatch_group_t
轉換成dispatch_semaphore_t
,並調用dispatch_semaphore_wait
,原子性減1後,進入等待狀態直到有信號喚醒。因此說dispatch_group_enter就是對dispatch_semaphore_wait的封裝。this
void
dispatch_group_leave(dispatch_group_t dg)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
dispatch_atomic_release_barrier();
long value = dispatch_atomic_inc2o(dsema, dsema_value);//dsema_value原子性加1
if (slowpath(value == LONG_MIN)) {//內存溢出,因爲dispatch_group_leave在dispatch_group_enter以前調用
DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
}
if (slowpath(value == dsema->dsema_orig)) {//表示全部任務已經完成,喚醒group
(void)_dispatch_group_wake(dsema);
}
}
複製代碼
從上面的源代碼中咱們看到dispatch_group_leave
將dispatch_group_t
轉換成dispatch_semaphore_t
後將dsema_value
的值原子性加1。若是value
爲LONG_MIN
程序crash;若是value
等於dsema_orig
表示全部任務已完成,調用_dispatch_group_wake
喚醒group(_dispatch_group_wake
的用於和notify有關,咱們會在後面介紹)。由於在enter
的時候進行了原子性減1操做。因此在leave
的時候須要原子性加1。atom
這裏先說明一下enter
和leave
之間的關係:
dispatch_group_leave與dispatch_group_enter配對使用。當調用了dispatch_group_enter
而沒有調用dispatch_group_leave
時,因爲value
不等於dsema_orig
不會走到喚醒邏輯,dispatch_group_notify
中的任務沒法執行或者dispatch_group_wait
收不到信號而卡住線程。
dispatch_group_enter必須在dispatch_group_leave以前出現。當dispatch_group_leave
比dispatch_group_enter
多調用了一次或者說在dispatch_group_enter
以前被調用的時候,dispatch_group_leave
進行原子性加1操做,至關於value
爲LONGMAX+1
,發生數據長度溢出,變成LONG_MIN
,因爲value == LONG_MIN
成立,程序發生crash。
void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
_dispatch_call_block_and_release);
}
複製代碼
dispatch_group_notify
是dispatch_group_notify_f
的封裝,具體實如今後者。
void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
void (*func)(void *))
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
struct dispatch_sema_notify_s *dsn, *prev;
//封裝dispatch_continuation_t結構體
// FIXME -- this should be updated to use the continuation cache
while (!(dsn = calloc(1, sizeof(*dsn)))) {
sleep(1);
}
dsn->dsn_queue = dq;
dsn->dsn_ctxt = ctxt;
dsn->dsn_func = func;
_dispatch_retain(dq);
dispatch_atomic_store_barrier();
//將結構體放到鏈表尾部,若是鏈表爲空同時設置鏈表頭部節點並喚醒group
prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
if (fastpath(prev)) {
prev->dsn_next = dsn;
} else {
_dispatch_retain(dg);
(void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
if (dsema->dsema_value == dsema->dsema_orig) {//任務已經完成,喚醒group
_dispatch_group_wake(dsema);
}
}
}
複製代碼
因此dispatch_group_notify
函數只是用鏈表把全部回調通知保存起來,等待調用。
static long
_dispatch_group_wake(dispatch_semaphore_t dsema)
{
struct dispatch_sema_notify_s *next, *head, *tail = NULL;
long rval;
//將dsema的dsema_notify_head賦值爲NULL,同時將以前的內容賦給head
head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
if (head) {
// snapshot before anything is notified/woken <rdar://problem/8554546>
//將dsema的dsema_notify_tail賦值爲NULL,同時將以前的內容賦給tail
tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
}
//將dsema的dsema_group_waiters設置爲0,並返回原來的值
rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
if (rval) {
//循環調用semaphore_signal喚醒當初等待group的信號量,使得dispatch_group_wait函數返回。
// wake group waiters
#if USE_MACH_SEM
_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
do {
kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
DISPATCH_SEMAPHORE_VERIFY_KR(kr);
} while (--rval);
#elif USE_POSIX_SEM
do {
int ret = sem_post(&dsema->dsema_sem);
DISPATCH_SEMAPHORE_VERIFY_RET(ret);
} while (--rval);
#endif
}
if (head) {
//獲取鏈表,依次調用dispatch_async_f異步執行在notify函數中的任務即Block。
// async group notify blocks
do {
dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
_dispatch_release(head->dsn_queue);
next = fastpath(head->dsn_next);
if (!next && head != tail) {
while (!(next = fastpath(head->dsn_next))) {
_dispatch_hardware_pause();
}
}
free(head);
} while ((head = next));
_dispatch_release(dsema);
}
return 0;
}
複製代碼
_dispatch_group_wake
主要的做用有兩個:
調用semaphore_signal喚醒當初等待group的信號量,使得dispatch_group_wait函數返回。
獲取鏈表,依次調用dispatch_async_f異步執行在notify函數中的任務即Block。
到這裏咱們已經差很少知道了dispatch_group
工做過程,咱們用一張圖表示:
long
dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
{
dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
if (dsema->dsema_value == dsema->dsema_orig) {//沒有須要執行的任務
return 0;
}
if (timeout == 0) {//返回超時
#if USE_MACH_SEM
return KERN_OPERATION_TIMED_OUT;
#elif USE_POSIX_SEM
errno = ETIMEDOUT;
return (-1);
#endif
}
return _dispatch_group_wait_slow(dsema, timeout);
}
複製代碼
dispatch_group_wait
用於等待group中的任務完成。
static long
_dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
long orig;
again:
// check before we cause another signal to be sent by incrementing
// dsema->dsema_group_waiters
if (dsema->dsema_value == dsema->dsema_orig) {
return _dispatch_group_wake(dsema);
}
// Mach semaphores appear to sometimes spuriously wake up. Therefore,
// we keep a parallel count of the number of times a Mach semaphore is
// signaled (6880961).
(void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
// check the values again in case we need to wake any threads
if (dsema->dsema_value == dsema->dsema_orig) {
return _dispatch_group_wake(dsema);
}
#if USE_MACH_SEM
mach_timespec_t _timeout;
kern_return_t kr;
_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
// From xnu/osfmk/kern/sync_sema.c:
// wait_semaphore->count = -1; /* we don't keep an actual count */ // // The code above does not match the documentation, and that fact is // not surprising. The documented semantics are clumsy to use in any // practical way. The above hack effectively tricks the rest of the // Mach semaphore logic to behave like the libdispatch algorithm. switch (timeout) { default: do { uint64_t nsec = _dispatch_timeout(timeout); _timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC); _timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC); kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port, _timeout)); } while (kr == KERN_ABORTED); if (kr != KERN_OPERATION_TIMED_OUT) { DISPATCH_SEMAPHORE_VERIFY_KR(kr); break; } // Fall through and try to undo the earlier change to // dsema->dsema_group_waiters case DISPATCH_TIME_NOW: while ((orig = dsema->dsema_group_waiters)) { if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig, orig - 1)) { return KERN_OPERATION_TIMED_OUT; } } // Another thread called semaphore_signal(). // Fall through and drain the wakeup. case DISPATCH_TIME_FOREVER: do { kr = semaphore_wait(dsema->dsema_waiter_port); } while (kr == KERN_ABORTED); DISPATCH_SEMAPHORE_VERIFY_KR(kr); break; } #elif USE_POSIX_SEM //這部分代碼省略 #endif goto again; } 複製代碼
從上面的代碼咱們發現_dispatch_group_wait_slow
和_dispatch_semaphore_wait_slow
的邏輯很接近。都利用mach內核的semaphore進行信號的發送。區別在於_dispatch_semaphore_wait_slow
在等待結束後是return,而_dispatch_group_wait_slow
在等待結束是調用_dispatch_group_wake
去喚醒這個group。
dispatch_group
是一個初始值爲LONG_MAX
的信號量,group中的任務完成是判斷其value
是否恢復成初始值。
dispatch_group_enter
和dispatch_group_leave
必須成對使用而且支持嵌套。
若是dispatch_group_enter
比dispatch_group_leave
多,因爲value
不等於dsema_orig
不會走到喚醒邏輯,dispatch_group_notify
中的任務沒法執行或者dispatch_group_wait
收不到信號而卡住線程。若是是dispatch_group_leave
多,則會引發崩潰。