JavaShuo
欄目
標籤
Normalized and Geometry-Aware Self-Attention Network for Image Captioning
時間 2020-12-30
標籤
論文閱讀
欄目
系統網絡
简体版
原文
原文鏈接
重點在自注意力機制的image captioning方法上。 現有的Self-Attention方法作者認爲存在兩個問題: 一個是:Internal Covariate Shift 我的理解就是輸入分佈不一樣 解決辦法就是Normalization。 原來的Transformer當中也是有Normalization的,但是作者認爲原來的做法不夠好: 翻譯過來,就是要把norm放到自注意力模塊裏面
>>阅读原文<<
相關文章
1.
Reflective Decoding Network for Image Captioning論文閱讀
2.
Self-critical Sequence Training for Image Captioning
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
Pose-Normalized Image Generation for Person Re-identification (note)
8.
論文筆記:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
Ncut算法(Normalized cuts and image segmentation)
10.
PEPSI++: Fast and Lightweight Network for Image Inpainting | 簡記
更多相關文章...
•
RSS
元素
-
RSS 教程
•
ASP.NET Image 控件
-
ASP.NET 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
normalized
captioning
network
image
c#image
action.....and
between...and
react+and
for...of
69.for
系統網絡
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Reflective Decoding Network for Image Captioning論文閱讀
2.
Self-critical Sequence Training for Image Captioning
3.
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》
4.
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
5.
(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
6.
CVPR 2018 Oral:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
7.
Pose-Normalized Image Generation for Person Re-identification (note)
8.
論文筆記:Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
9.
Ncut算法(Normalized cuts and image segmentation)
10.
PEPSI++: Fast and Lightweight Network for Image Inpainting | 簡記
>>更多相關文章<<