ML(附錄1)——梯度下降

  梯度下降是迭代法的一種,可以用於求解最小二乘問題(線性和非線性都可以)。在求解機器學習算法的模型參數,即無約束優化問題時,梯度下降(Gradient Descent)是最常採用的方法之一,另一種常用的方法是最小二乘法。在求解損失函數的最小值時,可以通過梯度下降法來一步步的迭代求解,得到最小化的損失函數和模型參數值。反過來,如果我們需要求解損失函數的最大值,這時就需要用梯度上升法來迭代了。在機器
相關文章
相關標籤/搜索