這個問題雖然看起來很小,卻並不那麼容易回答。html
你們若是有更好的方法歡迎賜教,先來一個天真的估算方法:java
假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少爲20,而後假設每一個Transaction由一個線程完成,繼續假設平均每一個線程處理一個Transaction的時間爲4s。spring
那麼問題轉化爲:如何設計線程池大小,使得能夠在1s內處理完20個Transaction?apache
計算過程很簡單,每一個線程的處理能力爲0.25TPS,那麼要達到20TPS,顯然須要20/0.25=80個線程。服務器
很顯然這個估算方法很天真,由於它沒有考慮到CPU數目。通常服務器的CPU核數爲16或者32,若是有80個線程,那麼確定會帶來太多沒必要要的線程上下文切換開銷。網絡
再來第二種簡單的但不知是否可行的方法(N爲CPU總核數):多線程
若是一臺服務器上只部署這一個應用而且只有這一個線程池,那麼這種估算或許合理,具體還需自行測試驗證。intellij-idea
接下來在這個文檔:服務器性能IO優化 中發現一個估算公式:app
最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目異步
好比平均每一個線程CPU運行時間爲0.5s,而線程等待時間(非CPU運行時間,好比IO)爲1.5s,CPU核心數爲8,那麼根據上面這個公式估算獲得:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化爲:
最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目
能夠得出一個結論:線程等待時間所佔比例越高,須要越多線程。線程CPU時間所佔比例越高,須要越少線程。
上一種估算方法也和這個結論相合。
一個系統最快的部分是CPU,因此決定一個系統吞吐量上限的是CPU。加強CPU處理能力,能夠提升系統吞吐量上限。但根據短板效應,真實的系統吞吐量並不能單純根據CPU來計算。那要提升系統吞吐量,就須要從「系統短板」(好比網絡延遲、IO)着手:
第一條能夠聯繫到Amdahl定律,這條定律定義了串行系統並行化後的加速比計算公式:
加速比=優化前系統耗時 / 優化後系統耗時
加速比越大,代表系統並行化的優化效果越好。Addahl定律還給出了系統並行度、CPU數目和加速比的關係,加速比爲Speedup,系統串行化比率(指串行執行代碼所佔比率)爲F,CPU數目爲N:
Speedup <= 1 / (F + (1-F)/N)
當N足夠大時,串行化比率F越小,加速比Speedup越大。
寫到這裏,我忽然冒出一個問題。
是否使用線程池就必定比使用單線程高效呢?
答案是否認的,好比Redis就是單線程的,但它卻很是高效,基本操做都能達到十萬量級/s。從線程這個角度來看,部分緣由在於:
固然「Redis很快」更本質的緣由在於:Redis基本都是內存操做,這種狀況下單線程能夠很高效地利用CPU。而多線程適用場景通常是:存在至關比例的IO和網絡操做。
因此即便有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都須要結合系統真實狀況(好比是IO密集型或者是CPU密集型或者是純內存操做)和硬件環境(CPU、內存、硬盤讀寫速度、網絡情況等)來不斷嘗試達到一個符合實際的合理估算值。
最後來一個「Dark Magic」估算方法(由於我暫時尚未搞懂它的原理),使用下面的類:
package threadpool; import java.math.BigDecimal; import java.math.RoundingMode; import java.util.Timer; import java.util.TimerTask; import java.util.concurrent.BlockingQueue; /** * A class that calculates the optimal thread pool boundaries. It takes the * desired target utilization and the desired work queue memory consumption as * input and retuns thread count and work queue capacity. * * @author Niklas Schlimm */ public abstract class PoolSizeCalculator { /** * The sample queue size to calculate the size of a single {@link Runnable} * element. */ private final int SAMPLE_QUEUE_SIZE = 1000; /** * Accuracy of test run. It must finish within 20ms of the testTime * otherwise we retry the test. This could be configurable. */ private final int EPSYLON = 20; /** * Control variable for the CPU time investigation. */ private volatile boolean expired; /** * Time (millis) of the test run in the CPU time calculation. */ private final long testtime = 3000; /** * Calculates the boundaries of a thread pool for a given {@link Runnable}. * * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * * Practice' (chapter 8.2) * * * @param cpu * * cpu time consumed by considered task * * @param wait * * wait time of considered task * * @param targetUtilization * * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply(new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * * Runs the {@link Runnable} over a period defined in {@link #testtime}. * * Based on Heinz Kabbutz' ideas * * (http://www.javaspecialists.eu/archive/Issue124.html). * * * * @param task * * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) { throw new IllegalStateException("Test not accurate"); } expired = false; start = System.currentTimeMillis(); Timer timer = new Timer(); timer.schedule(new TimerTask() { public void run() { expired = true; } }, testtime); while (!expired) { task.run(); } start = System.currentTimeMillis() - start; timer.cancel(); } while (Math.abs(start - testtime) > EPSYLON); collectGarbage(3); } private void collectGarbage(int times) { for (int i = 0; i < times; i++) { System.gc(); try { Thread.sleep(10); } catch (InterruptedException e) { Thread.currentThread().interrupt(); break; } } } /** * Calculates the memory usage of a single element in a work queue. Based on * Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue029.html). * * @return memory usage of a single {@link Runnable} element in the thread * pools work queue */ public long calculateMemoryUsage() { BlockingQueue queue = createWorkQueue(); for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { queue.add(creatTask()); } long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); queue = null; collectGarbage(15); mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); queue = createWorkQueue(); for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { queue.add(creatTask()); } collectGarbage(15); mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); return (mem1 - mem0) / SAMPLE_QUEUE_SIZE; } /** * Create your runnable task here. * * @return an instance of your runnable task under investigation */ protected abstract Runnable creatTask(); /** * Return an instance of the queue used in the thread pool. * * @return queue instance */ protected abstract BlockingQueue createWorkQueue(); /** * Calculate current cpu time. Various frameworks may be used here, * depending on the operating system in use. (e.g. * http://www.hyperic.com/products/sigar). The more accurate the CPU time * measurement, the more accurate the results for thread count boundaries. * * @return current cpu time of current thread */ protected abstract long getCurrentThreadCPUTime(); }
而後本身繼承這個抽象類並實現它的三個抽象方法,好比下面是我寫的一個示例(任務是請求網絡數據),其中我指按期望CPU利用率爲1.0(即100%),任務隊列總大小不超過100,000字節:
package threadpool; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.lang.management.ManagementFactory; import java.math.BigDecimal; import java.net.HttpURLConnection; import java.net.URL; import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator { @Override protected Runnable creatTask() { return new AsyncIOTask(); } @Override protected BlockingQueue createWorkQueue() { return new LinkedBlockingQueue(1000); } @Override protected long getCurrentThreadCPUTime() { return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime(); } public static void main(String[] args) { PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl(); poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000)); } } /** * 自定義的異步IO任務 * @author Will * */ class AsyncIOTask implements Runnable { public void run() { HttpURLConnection connection = null; BufferedReader reader = null; try { String getURL = "http://baidu.com"; URL getUrl = new URL(getURL); connection = (HttpURLConnection) getUrl.openConnection(); connection.connect(); reader = new BufferedReader(new InputStreamReader( connection.getInputStream())); String line; while ((line = reader.readLine()) != null) { // empty loop } } catch (IOException e) { } finally { if(reader != null) { try { reader.close(); } catch(Exception e) { } } connection.disconnect(); } } }
獲得以下輸出:
Target queue memory usage (bytes): 100000 createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queue Formula: 100000 / 40 * Recommended queue capacity (bytes): 2500 Number of CPU: 8 Target utilization: 1 Elapsed time (nanos): 3000000000 Compute time (nanos): 280801800 Wait time (nanos): 2719198200 Formula: 8 * 1 * (1 + 2719198200 / 280801800) * Optimal thread count: 88
推薦的任務隊列大小爲2500,線程數爲88。依次爲依據,咱們就能夠構造這樣一個線程池:
ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2500));
能夠將這個文件打包成可執行的jar文件,這樣就能夠拷貝到測試/正式環境上執行。
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>threadpool</groupId> <artifactId>dark-magic</artifactId> <version>1.0-SNAPSHOT</version> <packaging>jar</packaging> <name>dark_magic</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> </dependencies> <build> <finalName>dark-magic</finalName> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <appendAssemblyId>false</appendAssemblyId> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <!-- 此處指定main方法入口的class --> <mainClass>threadpool.SimplePoolSizeCaculatorImpl</mainClass> </manifest> </archive> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>assembly</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
來源:
www.cnblogs.com/cjsblog/p/9068886.html
參考:
http://ifeve.com/how-to-calculate-threadpool-size/
http://www.importnew.com/17384.html
http://www.javashuo.com/article/p-qmnpuqjz-oa.html
近期熱文推薦:
1.Java 15 正式發佈, 14 個新特性,刷新你的認知!!
2.終於靠開源項目弄到 IntelliJ IDEA 激活碼了,真香!
3.我用 Java 8 寫了一段邏輯,同事直呼看不懂,你試試看。。
以爲不錯,別忘了隨手點贊+轉發哦!