ncnn 是一個爲手機端極致優化的高性能神經網絡前向計算框架。ncnn 從設計之初深入考慮手機端的部署和使用。無第三方依賴,跨平臺,手機端 cpu 的速度快於目前全部已知的開源框架。基於 ncnn,開發者可以將深度學習算法輕鬆移植到手機端高效執行,開發出人工智能 APP,將 AI 帶到你的指尖。ncnn 目前已在騰訊多款應用中使用,如 QQ,Qzone,微信,每天P圖等。html
基於神經網絡計算的開源人臉檢測java
基於神經網絡計算的開源人臉識別android
mtcnn和facenet具體介紹能夠google一下c++
修改build.gradle,添加ndk環境git
android {
.....
defaultConfig {
........
externalNativeBuild {
cmake {
arguments "-DANDROID_TOOLCHAIN=clang"
cFlags "-fopenmp -O2 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
cppFlags "-fopenmp -O2 -fvisibility=hidden -fvisibility-inlines-hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
arguments "-DANDROID_STL=c++_shared", "-DANDROID_CPP_FEATURES=rtti exceptions"
cppFlags ""
cppFlags "-std=c++11"
cppFlags "-frtti"
cppFlags "-fexceptions"
}
}
ndk {
abiFilters 'armeabi-v7a', 'arm64-v8a' //,'x86', 'x86_64', 'armeabi'
stl "gnustl_static"
}
}
compileOptions {
targetCompatibility JavaVersion.VERSION_1_8
sourceCompatibility JavaVersion.VERSION_1_8
}
........
externalNativeBuild {
cmake {
path "CMakeLists.txt"
version "3.10.2"
}
}
}
複製代碼
而後在build.gradle的統計目錄下添加CMakeLists.txtgithub
# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html
cmake_minimum_required(VERSION 3.4.1)
include_directories(src/main/cpp/opencv2
src/main/cpp/opencv
src/main/cpp/include
src/main/cpp/)
file(GLOB MTCNN_SRC src/main/cpp/*.h
src/main/cpp/*.cpp
src/main/cpp/mtcnn.cpp
src/main/cpp/mobilefacenet.cpp
src/main/cpp/mtcnn_jni.cpp)
set(MTCNN_COMPILE_CODE ${MTCNN_SRC})
add_library(mtcnn SHARED ${MTCNN_COMPILE_CODE})
add_library(libopencv_java3 SHARED IMPORTED)
set_target_properties(libopencv_java3 PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/jniLibs/${ANDROID_ABI}/libopencv_java3.so)
add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn
PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/src/main/jniLibs/${ANDROID_ABI}/libncnn.a)
find_library(log-lib log)
target_link_libraries(
mtcnn
libopencv_java3
libncnn
jnigraphics
z
${log-lib})
複製代碼
在src的main文件夾下建立jniLibs,而後對應的ABI文件夾下添加libopencv_java3.so和libncnn.a算法
或者添加到其餘位置,在build.gradle中指定jinLibs也是能夠的bash
將模型文件*.bin,*.param,放入assets文件夾,而且經過java代碼傳入NDK中初始化。微信
最後寫demo測試運行便可網絡
在RK3288上測試能夠達到20幀
代碼地址:android_face_ncnn