在上一節中,HashMap在jdk 1.8中用了鏈表和紅黑樹兩種方式解決衝突,在TreeMap中也是用紅黑樹存儲的。下面分析一下紅黑樹的結構和基本操做。
上一節中已經描述了紅黑樹的基本概念和特徵,下面直接經過一個例子分析紅黑樹的構造和調整方法。
紅黑樹是一棵二叉查找樹,在二叉樹的基礎上增長了節點的顏色,下面是TreeMap中的紅黑樹定義:
private static final boolean RED = false; private static final boolean BLACK = true; static final class Entry<K,V> implements Map.Entry<K,V> { K key; V value; Entry<K,V> left; Entry<K,V> right; Entry<K,V> parent; boolean color = BLACK; /** * 給定key、value和父節點,構造一個新的。其中節點顏色爲黑色 */ Entry(K key, V value, Entry<K,V> parent) { this.key = key; this.value = value; this.parent = parent; } }
紅黑樹的插入和刪除,都有可能破壞其特性,就不是一棵紅黑樹了,因此要調整。調整的方法又兩種,一種是改變某個節點的顏色,另一種是結構調整,包括左旋和右旋。 左旋:將X的節點的右兒子節點Y變爲其父節點,而且將Y的左子樹變爲X的右子樹,變換過程入下圖
右旋:將X的節點的左兒子節點Y變爲其父節點,而且將Y的右子樹變爲X的左子樹,變換過程入下圖
當在紅黑樹中插入一個節點後,可能會破壞紅黑樹的規則,首先再回顧一下紅黑數的特色:node
從上面的條件能夠看出,a確定是不會違背的。插入的節點不在根節點處,因此b也不會違背。插入的節點時非空節點,c也不會違背。最有可能違背的就是d和e。而在咱們插入節點時,先將要插入的節點顏色設置爲紅色,這樣也就不會違背e。因此,插入後只須要調整不違背e就能夠。
插入後調整須要分三種狀況來處理:數據結構
插入的是根節點:app
處理方法是直接將根節點顏色設置爲黑色
不須要處理this
這種又分爲三種狀況
下面假設插入節點爲x,父節點爲xp,祖父節點爲xpp,祖父節點的左兒子爲xppl,祖父節點的右兒子爲xpprspa
處理邏輯:將父節點xp設爲紅色,祖父節點的兒子節點(xppl或者xppr)設爲黑色,將祖父節點xpp設爲紅色,將祖父節點xpp設爲當前節點,繼續處理。code
處理邏輯:父節點xp做爲當前節點x, 以當前節點x爲支點進行左旋。ip
處理邏輯:將父節點xp設置爲黑色,祖父節點xpp設置爲紅色,以祖父節點xpp爲支點進行右旋rem
未完,待續。。。get
未完,待續。。。源碼
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; //在節點刪除後,需解除連接 TreeNode<K,V> prev; boolean red; TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } /** * 返回根節點 */ final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } /** * 確保根節點就是第一個節點 */ static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) { int n; if (root != null && tab != null && (n = tab.length) > 0) { int index = (n - 1) & root.hash; TreeNode<K,V> first = (TreeNode<K,V>)tab[index]; //若是根節點不是第一個節點,進行調整 if (root != first) { Node<K,V> rn; tab[index] = root; TreeNode<K,V> rp = root.prev; if ((rn = root.next) != null) ((TreeNode<K,V>)rn).prev = rp; if (rp != null) rp.next = rn; if (first != null) first.prev = root; root.next = first; root.prev = null; } assert checkInvariants(root); } } /** * 根據hash值和key查詢節點 */ final TreeNode<K,V> find(int h, Object k, Class<?> kc) { TreeNode<K,V> p = this; do { int ph, dir; K pk; TreeNode<K,V> pl = p.left, pr = p.right, q; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.find(h, k, kc)) != null) return q; else p = pl; } while (p != null); return null; } /** * 根據hash值和key查詢節點 */ final TreeNode<K,V> getTreeNode(int h, Object k) { return ((parent != null) ? root() : this).find(h, k, null); } /** * 將鏈表轉換爲紅黑樹 */ final void treeify(Node<K,V>[] tab) { TreeNode<K,V> root = null; //從第一個節點開始 for (TreeNode<K,V> x = this, next; x != null; x = next) { next = (TreeNode<K,V>)x.next; x.left = x.right = null; //若是root節點爲null,x爲根節點,此節點爲黑色,父節點爲null if (root == null) { x.parent = null; x.red = false; root = x; } else { //x的key值 K k = x.key; //x的hash值 int h = x.hash; Class<?> kc = null; for (TreeNode<K,V> p = root;;) { int dir, ph; K pk = p.key; //左邊 if ((ph = p.hash) > h) dir = -1; //右邊 else if (ph < h) dir = 1; //經過仲裁方法判斷 else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K,V> xp = p; //dir <=0 左子樹搜索,而且判斷左兒子是否爲空,表示是否到葉子節點 if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; //插入元素,判斷是否平衡,而且調整 root = balanceInsertion(root, x); break; } } } } //確保根節點就是第一個節點 moveRootToFront(tab, root); } /** * 紅黑樹轉換爲鏈表 */ final Node<K,V> untreeify(HashMap<K,V> map) { Node<K,V> hd = null, tl = null; for (Node<K,V> q = this; q != null; q = q.next) { Node<K,V> p = map.replacementNode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * 插入一個節點 */ final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v) { Class<?> kc = null; boolean searched = false; TreeNode<K,V> root = (parent != null) ? root() : this; //從根據點開始,和當前搜索節點的hash比較 for (TreeNode<K,V> p = root;;) { int dir, ph; K pk; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; //hash和key都一致 else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K,V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { Node<K,V> xpn = xp.next; //新建節點 TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((TreeNode<K,V>)xpn).prev = x; //插入元素,判斷是否平衡,而且調整。確保根節點就是第一個節點 moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } /** * Removes the given node, that must be present before this call. * This is messier than typical red-black deletion code because we * cannot swap the contents of an interior node with a leaf * successor that is pinned by "next" pointers that are accessible * independently during traversal. So instead we swap the tree * linkages. If the current tree appears to have too few nodes, * the bin is converted back to a plain bin. (The test triggers * somewhere between 2 and 6 nodes, depending on tree structure). */ final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, boolean movable) { int n; if (tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl; TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev; if (pred == null) tab[index] = first = succ; else pred.next = succ; if (succ != null) succ.prev = pred; if (first == null) return; if (root.parent != null) root = root.root(); if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) { tab[index] = first.untreeify(map); // too small return; } TreeNode<K,V> p = this, pl = left, pr = right, replacement; if (pl != null && pr != null) { TreeNode<K,V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K,V> sr = s.right; TreeNode<K,V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K,V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) root = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<K,V> pp = replacement.parent = p.parent; if (pp == null) root = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement); if (replacement == p) { // detach TreeNode<K,V> pp = p.parent; p.parent = null; if (pp != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; } } if (movable) moveRootToFront(tab, r); } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR //左旋 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> r, pp, rl; //以p爲左旋支點,且p不爲空,右兒子不爲空 if (p != null && (r = p.right) != null) { //將p的右兒子r的左兒子rl變爲p的右兒子 if ((rl = p.right = r.left) != null) rl.parent = p; //處理p、l和p父節點的關係 if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; //處理p和r的關係 r.left = p; p.parent = r; } return root; } //右旋 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> l, pp, lr; //p:右旋支點,不爲空,p的左兒子l不爲空 if (p != null && (l = p.left) != null) { //將左兒子的右子樹變爲p的左子樹 if ((lr = p.left = l.right) != null) lr.parent = p; //p的父節點變爲l的父節點 if ((pp = l.parent = p.parent) == null) (root = l).red = false; //若是p爲右兒子,則p的父節點的右兒子變爲l,不然左兒子變爲l else if (pp.right == p) pp.right = l; else pp.left = l; //p變爲l的右兒子 l.right = p; p.parent = l; } return root; } static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x) { //插入節點初始化爲紅色 x.red = true; //xp:父節點,xpp:祖父節點, xppl:祖父節點的左兒子,xppr:祖父節點的右兒子 //循環遍歷 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { //插入的節點爲根節點,節點顏色轉換爲黑色 if ((xp = x.parent) == null) { x.red = false; return x; } //當前節點的父爲黑色節點或者父節點爲根節點,直接返回 else if (!xp.red || (xpp = xp.parent) == null) return root; //祖父節點的左兒子是父節點 if (xp == (xppl = xpp.left)) { //S1:當前節點的父節點xp是紅色,且當前節點的祖父節xpp點的另外一個子節點(xppl或者xppr)也是紅色 if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { //S2:當前節點的父節點xp是紅色,祖父節點的兒子節點(xppl或者xppr)是黑色,且當前節點x是其父節點xp的右孩子 if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } //S3:當前節點的父節點xp是紅色,祖父節點的兒子節點(xppl或者xppr)是黑色,且當前節點是其父節點xp的左孩子 if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { //S1:當前節點的父節點xp是紅色,且當前節點的祖父節xpp點的另外一個子節點(xppl或者xppr)也是紅色 if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { //S2:當前節點的父節點xp是紅色,祖父節點的兒子節點(xppl或者xppr)是黑色,且當前節點x是其父節點xp的右孩子 if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } //S3:當前節點的父節點xp是紅色,祖父節點的兒子節點(xppl或者xppr)是黑色,且當前節點是其父節點xp的左孩子 if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x) { for (TreeNode<K,V> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<K,V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<K,V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } }