最大比率傳輸(Maximum Ratio Transmission, MRT)原理分析

轉載請註明出處。算法

最大比率發射(Maximum Ratio Transmission, MRT)是文獻中常常看見的一個詞,今天就在這裏作一下筆記。
參考文獻爲:T. K. Y. Lo, "Maximum ratio transmission," in IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458-1461, Oct. 1999. doi: 10.1109/26.795811框架

1. 背景

無線通訊系統受到的最不利的傳播影響是多徑衰落。天線分集技術是無線通訊工程師對抗多徑衰落的經常使用方法之一。一種經典的組合技術是最大比率組合(MRC),MRC中來自接收天線單元的信號被加權,使得其和的信噪比(SNR)最大。目前爲止,MRC技術僅用於接收應用處理中。隨着愈來愈多的無線業務的出現,愈來愈多的應用可能須要在發射機或發射機和接收機處進行分集以對抗嚴重的衰落效應。所以提出了一些方案,好比延遲發射分集方案。機器學習

然而,這些發射分集技術創建在目標的基礎上,而不是最大化信噪比。也就是說,就信噪比性能而言,它們是次優的。所以,本文將從概念和原理上創建最大傳動比(MRT)的框架。它能夠看做是多發射天線和多接收天線最大比值算法的推廣。它還爲系統利用發射分集和接收分集得到最佳性能提供了參考。ide

2. 系統模型

發射端配備 \(K\) 根天線,接收端配備 \(L\) 根發射天線,其系統模型如圖1所示:性能

圖1. 系統模型

假設其信道 \(\pmb{H}\) 是統計信道,能夠表示爲:學習

這裏 \(h_{pk}\) 表示第 \(k\) 根天線和第 \(p\) 根天線的信道係數。優化

\[{\pmb{x}} = {\boldsymbol{Hs}} + {\boldsymbol{n}} \quad \quad \quad \quad \quad(2) \]

這裏發射的信號 \(\boldsymbol{s}\) 表示爲ui

\[{\pmb{s}} = {[{s_1} \cdots {s_K}]^{\rm T}} = c{[{v_1} \cdots {v_K}]^{\rm T}} \]

\({\pmb{n}} = {[{n_1} \cdots {n_L}]^{\rm T}}\) 表示加性高斯白噪聲。人工智能

3. 最大比率發射(MRT)原理

爲了從信道矩陣生成 \(K \times 1\) 的傳輸權重向量,須要進行線性變換,即:spa

\[{\pmb{v}} = \frac{1}{a}{({\pmb{gH}})^{\rm H}} \]

這裏 \({\pmb{g}} = [{g_1} \cdots {g_L}]\)。傳輸信號向量就能夠表示爲:

\[{\pmb{s}} = \frac{c}{a}{({\pmb{gH}})^{\rm H}} \]

歸一化因子 \(a\) 必須知足:

所以,接收信號變爲:

\[{\pmb{x}} = \frac{c}{a}{\pmb{H}}{({\pmb{gH}})^{\rm H}} + {\pmb{n}} \]

爲了估計發送符號,必須將接收權重向量 \(\pmb{w}\) 應用於接收信號向量 \(\pmb{x}\),若是將 \(\pmb{w}\) 設爲 \(\pmb{g}\),那麼估計的符號爲:

\[\tilde c = {\pmb{gx}} = \frac{c}{a}{\pmb{gH}}{({\pmb{gH}})^{\rm H}} + {\pmb{gH}} = ac + {\pmb{gn}} \]

總的SNR爲:

\[\gamma = \frac{{{a^2}}}{{{\pmb{g}}{{\pmb{g}}^{\rm H}}}}{\gamma _0} = \frac{{{a^2}{\gamma _0}}}{{\sum\limits_{p = 1}^L {{{\left| {{g_p}} \right|}^2}} }}\quad \quad \quad\quad\quad(10) \]

這裏 \({\gamma _0} = \frac{{\sigma _c^2}}{{\sigma _n^2}}\) 表示單發射天線的平均SNR,(即沒有分集)。

從(10)式可知,總SNR和 \(\pmb{g}\) 有關,所以,能夠經過選擇合適的 \(\pmb{g}\) 來最大化總的SNR。
因爲 \(h_{pk}\) 假設在統計意義上是相同的,因此最大化SNR必須知足 \(\left| {{g_1}} \right| = \left| {{g_2}} \right| = \cdots = \left| {{g_L}} \right|\)。在不改變問題性質的狀況下,爲了簡單起見,能夠設置 \(\left| {{g_p}} \right| = 1\),所以,總的SNR能夠表示爲:

\[\gamma = \frac{{{a^2}}}{L}{\gamma _0} \quad \quad\quad \quad\quad \quad (11) \]

因此,當 \({{a^2}}\) 最大時,(11)式就是最大值。那麼 \({{a^2}}\) 時就有:

\[{({g_p}g_q^*)^*} = \frac{{\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} }}{{\left| {\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} } \right|}} \]

此時,有:

\[{a^2} = \sum\limits_{p = 1}^L {\sum\limits_{q = 1}^L {\left| {\sum\limits_{k = 1}^K {{h_{pk}}h_{qk}^*} } \right|} } \]

4. 討論

往期精選:
[1] 線性降維:主成分分析PCA原理分析與仿真驗證

[2] 5G+AI:有哪些新的研究方向和新範式?

[3] 簡述3D點雲配准算法

[4] 5G爲人工智能與工業互聯網賦能|79頁高清PPT

[5] 智能算法|以動物命名的算法

[6] 一份超全面的機器學習公共數據集

[7] 矩陣填充|奇異值閾值算法

[8] 可重構/大規模智能反射表面reconfigurable/large intelligent surface綜述

[9] 迭代硬閾值類算法總結||IHT/NIHT/CGIHT/HTP

[10] 軟閾值迭代算法(ISTA)和快速軟閾值迭代算法(FISTA)

[11] 伍德伯裏矩陣恆等式(Woodbury matrix identity)

[12] 壓縮感知:一種新型亞採樣技術

更多精彩內容請關注訂閱號優化與算法和加入QQ討論羣1032493483獲取更多資料

相關文章
相關標籤/搜索