做者:Bo Wang1,2, Shuang Qiu2, and Huiguang He1,2,3ide
目的:Retinal Vessel Segmentation is an essential step for the early diagnosis of eye-related diseases, such as diabetes and hypertension. Segmentation of blood vessels requires both sizeable receptive field and rich spatial information.ui
方法:Dual Encoding U-Net (DEU-Net), 空間information和上下文informationgoogle
該結構圖outputpatches居然和input同樣。spa
- Spatial Path,連續四個卷積,用了大stride:7,12,9,6.參考了Large kernel matters-improve semantic segmentation by global convolutional network., CVPR2017。
- Context Path,就是inception block,google提出的
- Attention Skip Module,最簡單的attention方式處理
- Feature Fusion Module,這個方式我看到過,不知道爲何叫作feature fusion,其實連結處就是和attention residual for image classification那篇文章同樣.
- Multiscale Predict Module,這個模塊沒看到過,主要是pixel shuffle(參考CVPR2016 Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network)這個操做。
試驗結果:略orm