從Java 5以後,在java.util.concurrent.locks包下提供了另一種方式來實現同步訪問,那就是Lock。java
若是一個代碼塊被synchronized修飾了,當一個線程獲取了對應的鎖,並執行該代碼塊時,其餘線程便只能一直等待,等待獲取鎖的線程釋放鎖,而這裏獲取鎖的線程釋放鎖只會有兩種狀況:ide
那麼若是這個獲取鎖的線程因爲要等待IO或者其餘緣由(好比調用sleep方法)被阻塞了,可是又沒有釋放鎖,其餘線程便只能等待。this
所以就須要有一種機制能夠不讓等待的線程一直無期限地等待下去。線程
再舉個例子:當有多個線程讀寫文件時,讀操做和寫操做會發生衝突現象,寫操做和寫操做會發生衝突現象,可是讀操做和讀操做不會發生衝突現象。code
可是採用synchronized關鍵字來實現同步的話,就會致使一個問題:若是多個線程都只是進行讀操做,因此當一個線程在進行讀操做時,其餘線程只能等待沒法進行讀操做。排序
所以就須要一種機制來使得多個線程都只是進行讀操做時,線程之間不會發生衝突,經過Lock就能夠辦到。接口
另外,經過Lock能夠知道線程有沒有成功獲取到鎖。這個是synchronized沒法辦到的。進程
總結一下,也就是說Lock提供了比synchronized更多的功能。可是要注意如下幾點:資源
Lock是一個接口:get
public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit) throws InterruptedException; void unlock(); Condition newCondition(); }
lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用來獲取鎖的。unLock()方法是用來釋放鎖的。
***
lock方法用來獲取鎖,若是鎖已被其餘線程獲取,則進行等待。
使用Lock必須在try{}catch{}塊中進行,而且將釋放鎖的操做放在finally塊中進行,以保證鎖必定被被釋放,防止死鎖的發生。一般使用Lock來進行同步的話,是如下面這種形式去使用的:
Lock lock = ...; lock.lock(); try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 }
tryLock()方法是有返回值的,它表示用來嘗試獲取鎖,若是獲取成功,則返回true,若是獲取失敗(即鎖已被其餘線程獲取),則返回false,也就說這個方法不管如何都會當即返回。在拿不到鎖時不會一直在那等待。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是相似的,只不過區別在於這個方法在拿不到鎖時會等待必定的時間,在時間期限以內若是還拿不到鎖,就返回false。若是一開始拿到鎖或者在等待期間內拿到了鎖,則返回true。
通常狀況下經過tryLock來獲取鎖時是這樣使用的:
Lock lock = ...; if(lock.tryLock()) { try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 } }else { //若是不能獲取鎖,則直接作其餘事情 }
lockInterruptibly()方法比較特殊,當經過這個方法去獲取鎖時,若是線程正在等待獲取鎖,則這個線程可以響應中斷,即中斷線程的等待狀態。也就是說,當兩個線程同時經過lock.lockInterruptibly()想獲取某個鎖時,倘若此時線程A獲取到了鎖,而線程B只有在等待,那麼對線程B調用threadB.interrupt()方法可以中斷線程B的等待過程。
因爲lockInterruptibly()的聲明中拋出了異常,因此lock.lockInterruptibly()必須放在try塊中或者在調用lockInterruptibly()的方法外聲明拋出InterruptedException。
所以lockInterruptibly()通常的使用形式以下:
public void method() throws InterruptedException { lock.lockInterruptibly(); try { //..... } finally { lock.unlock(); } }
注意,當一個線程獲取了鎖以後,是不會被interrupt()方法中斷的。由於自己在前面的文章中講過單獨調用interrupt()方法不能中斷正在運行過程當中的線程,只能中斷阻塞過程當中的線程。
所以當經過lockInterruptibly()方法獲取某個鎖時,若是不能獲取到,只有進行等待的狀況下,是能夠響應中斷的。
而用synchronized修飾的話,當一個線程處於等待某個鎖的狀態,是沒法被中斷的,只有一直等待下去。
ReentrantLock,意思是「可重入鎖」,ReentrantLock是惟一實現了Lock接口的類,而且ReentrantLock提供了更多的方法。
public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { Lock lock = new ReentrantLock(); //注意這個地方 lock.lock(); try { System.out.println(thread.getName()+"獲得了鎖"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"釋放了鎖"); lock.unlock(); } } }
輸出結果爲:
Thread-0獲得了鎖 Thread-1獲得了鎖 Thread-0釋放了鎖 Thread-1釋放了鎖
第二個線程怎麼會在第一個線程釋放鎖以前獲得了鎖?緣由在於,在insert方法中的lock變量是局部變量,每一個線程執行該方法時都會保存一個副本,那麼理所固然每一個線程執行到lock.lock()處獲取的是不一樣的鎖,因此就不會發生衝突。
因此,只須要將lock聲明爲類的屬性便可。
public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意這個地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { if(lock.tryLock()) { try { System.out.println(thread.getName()+"獲得了鎖"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"釋放了鎖"); lock.unlock(); } } else { System.out.println(thread.getName()+"獲取鎖失敗"); } } }
輸出結果爲:
Thread-0獲得了鎖 Thread-1獲取鎖失敗 Thread-0釋放了鎖
public class Test { private Lock lock = new ReentrantLock(); public static void main(String[] args) { Test test = new Test(); MyThread thread1 = new MyThread(test); MyThread thread2 = new MyThread(test); thread1.start(); thread2.start(); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } thread2.interrupt(); } public void insert(Thread thread) throws InterruptedException{ lock.lockInterruptibly(); //注意,若是須要正確中斷等待鎖的線程,必須將獲取鎖放在外面,而後將InterruptedException拋出 try { System.out.println(thread.getName()+"獲得了鎖"); long startTime = System.currentTimeMillis(); for( ; ;) { if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) break; //插入數據 } } finally { System.out.println(Thread.currentThread().getName()+"執行finally"); lock.unlock(); System.out.println(thread.getName()+"釋放了鎖"); } } } class MyThread extends Thread { private Test test = null; public MyThread(Test test) { this.test = test; } @Override public void run() { try { test.insert(Thread.currentThread()); } catch (InterruptedException e) { System.out.println(Thread.currentThread().getName()+"被中斷"); } } }
運行以後,發現thread2可以被正確中斷。
ReadWriteLock是一個接口,在它裏面只定義了兩個方法:
public interface ReadWriteLock { Lock readLock(); Lock writeLock(); }
一個用來獲取讀鎖,一個用來獲取寫鎖。也就是說將文件的讀寫操做分開,分紅2個鎖來分配給線程,從而使得多個線程能夠同時進行讀操做。
ReentrantReadWriteLock實現了ReadWriteLock接口,經過例子來看ReentrantReadWriteLock具體用法。
public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); } public void get(Thread thread) { rwl.readLock().lock(); try { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在進行讀操做"); } System.out.println(thread.getName()+"讀操做完畢"); } finally { rwl.readLock().unlock(); } } }
輸出結果顯示thread1和thread2在同時進行讀操做。而若是get方法改爲synchronized,輸出結果爲:thread1先執行完讀操做,而後thread2再執行讀操做。
public synchronized void get(Thread thread) { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在進行讀操做"); } System.out.println(thread.getName()+"讀操做完畢"); }
不過要注意的是,若是有一個線程已經佔用了讀鎖,此時其餘線程若是要申請寫鎖,則申請寫鎖的線程會一直等待釋放讀鎖。若是有一個線程已經佔用了寫鎖,則此時其餘線程若是申請寫鎖或者讀鎖,則申請的線程會一直等待釋放寫鎖。
Lock和synchronized有如下幾點不一樣:
synchronized和ReentrantLock都是可重入鎖。當一個線程執行到某個synchronized方法時,好比說method1,而在method1中會調用另一個synchronized方法method2,此時線程沒必要從新去申請鎖,而是能夠直接執行方法method2。可重入鎖最大的做用是避免死鎖。
就是能夠相應中斷的鎖。在Java中,synchronized就不是可中斷鎖,而Lock是可中斷鎖。
若是某一線程A正在執行鎖中的代碼,另外一線程B正在等待獲取該鎖,可能因爲等待時間過長,線程B不想等待了,想先處理其餘事情,咱們可讓它中斷本身或者在別的線程中中斷它,這種就是可中斷鎖。
lockInterruptibly()的用法體現了Lock的可中斷性。
公平鎖即儘可能以請求鎖的順序來獲取鎖。好比同是有多個線程在等待一個鎖,當這個鎖被釋放時,等待時間最久的線程(最早請求的線程)會得到該鎖,這種就是公平鎖。
非公平鎖即沒法保證鎖的獲取是按照請求鎖的順序進行的。這樣就可能致使某個或者一些線程永遠獲取不到鎖。
公平鎖的好處是等待鎖的線程不會餓死,可是總體效率相對低一些;非公平鎖的好處是總體效率相對高一些,可是有些線程可能會餓死或者說很早就在等待鎖,但要等好久纔會得到鎖。
在Java中,synchronized就是非公平鎖,它沒法保證等待的線程獲取鎖的順序。而對於ReentrantLock和ReentrantReadWriteLock,它默認狀況下是非公平鎖,可是能夠設置爲公平鎖。
公平鎖可使用new ReentrantLock(true)實現。
讀寫鎖將對一個資源(好比文件)的訪問分紅了2個鎖,一個讀鎖和一個寫鎖。正由於有了讀寫鎖,才使得多個線程之間的讀操做不會發生衝突。
ReadWriteLock就是讀寫鎖,它是一個接口,ReentrantReadWriteLock實現了這個接口。能夠經過readLock()獲取讀鎖,經過writeLock()獲取寫鎖。
死鎖是指兩個或兩個以上的進程在執行過程當中,因爭奪資源而形成的一種互相等待的現象,若無外力做用,他們都將沒法推動下去。這是一個嚴重的問題,由於死鎖會讓你的程序掛起沒法完成任務,死鎖的發生必須知足如下4個條件:
避免死鎖最簡單的方法就是阻止循環等待條件,將系統中全部的資源設置標誌位、排序,規定全部的進程申請資源必須以必定的順序作操做來避免死鎖。