Github地址:Mask_RCNN
『計算機視覺』Mask-RCNN_論文學習
『計算機視覺』Mask-RCNN_項目文檔翻譯
『計算機視覺』Mask-RCNN_推斷網絡其一:總覽
『計算機視覺』Mask-RCNN_推斷網絡其二:基於ReNet101的FPN共享網絡
『計算機視覺』Mask-RCNN_推斷網絡其三:RPN錨框處理和Proposal生成
『計算機視覺』Mask-RCNN_推斷網絡其四:FPN和ROIAlign的耦合
『計算機視覺』Mask-RCNN_推斷網絡其五:目標檢測結果精煉
『計算機視覺』Mask-RCNN_推斷網絡其六:Mask生成
『計算機視覺』Mask-RCNN_推斷網絡終篇:使用detect方法進行推斷
『計算機視覺』Mask-RCNN_錨框生成
『計算機視覺』Mask-RCNN_訓練網絡其一:數據集與Dataset類
『計算機視覺』Mask-RCNN_訓練網絡其二:train網絡結構&損失函數
『計算機視覺』Mask-RCNN_訓練網絡其三:訓練Modelhtml
準備了數據集後,咱們開始構建model,training網絡結構上一節已經介紹完了,如今咱們看一看訓練時如何調用training結構的網絡。python
如上所示,咱們首先創建圖結構(詳見上節『計算機視覺』Mask-RCNN_訓練網絡其二:train網絡結構),而後選擇初始化參數方案git
例子(train_shape.ipynb)中使用的是COCO預訓練模型,若是想要"Finds the last checkpoint file of the last trained model in the
model directory",那麼選擇"last"選項。github
載入參數方法以下,注意幾個以前接觸很少的操做,正則表達式
keras.engine下的saving模塊load_weights_from_hdf5_group_by_name按照名字對應,而load_weights_from_hdf5_group按照記錄順序對應express
def load_weights(self, filepath, by_name=False, exclude=None): """Modified version of the corresponding Keras function with the addition of multi-GPU support and the ability to exclude some layers from loading. exclude: list of layer names to exclude """ import h5py # Conditional import to support versions of Keras before 2.2 # TODO: remove in about 6 months (end of 2018) try: from keras.engine import saving except ImportError: # Keras before 2.2 used the 'topology' namespace. from keras.engine import topology as saving if exclude: by_name = True if h5py is None: raise ImportError('`load_weights` requires h5py.') f = h5py.File(filepath, mode='r') if 'layer_names' not in f.attrs and 'model_weights' in f: f = f['model_weights'] # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. keras_model = self.keras_model layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers # Exclude some layers if exclude: layers = filter(lambda l: l.name not in exclude, layers) if by_name: saving.load_weights_from_hdf5_group_by_name(f, layers) else: saving.load_weights_from_hdf5_group(f, layers) if hasattr(f, 'close'): f.close() # Update the log directory self.set_log_dir(filepath)
對於layer對象咱們有一下幾點說明網絡
layer.name:查詢層對象的節點名稱app
layer.trainable:層對象是否可訓練dom
對於TimeDistributed對象,其.layer方法返回對象纔是咱們要設定的層對象ide
載入模型並查看layers以下,
查看名稱以下,名稱即咱們在build函數中爲每一個層設置的名稱,和TensorFlow同樣,參數載入依賴於此。
載入h5文件並查看,f.attrs記錄了三個值,第一個爲字符串list,後兩個均爲字符串,對於"layer_names"咱們以下嘗試,其記錄了各個層的name字符串(h5記錄的都是二進制形式,須要轉碼)
在keras.engine的saving方法中,能夠看到後兩個記錄的解析,實際測試一個是keras的版本號,一個會返回b'tensorflow'
if 'keras_version' in f.attrs: original_keras_version = f.attrs['keras_version'].decode('utf8') else: original_keras_version = '1' if 'backend' in f.attrs: original_backend = f.attrs['backend'].decode('utf8') else: original_backend = None
"layer_names"記錄的字符串們能夠視爲h5文件索引,其索引對象爲子h5對象,子h5對象有attrs:"weight_names",也是字符串list,能夠索引子h5對象,其索引出的即是參數值,示意以下:
實際的載入參數時,keras API已經封裝的很好了,不須要咱們本身取對應h5中的名稱和網絡中的名稱,而後更新參數值。交由saving.load_weights_from_hdf5_group_by_name(f, layers),輸入f句柄,輸入須要載入參數的層對象便可對應名字完成載入。
本部不講解網絡結構,主要介紹的是訓練步驟,網絡結構介紹見:『計算機視覺』Mask-RCNN_訓練網絡其二:train網絡結構
模型訓練有兩種模式,
Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass layers='heads'
to the train()
function.
Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass layers="all
to train all layers.
train方法聲明以下
def train(self, train_dataset, val_dataset, learning_rate, epochs, layers, augmentation=None, custom_callbacks=None, no_augmentation_sources=None)
文檔說明以下
"""Train the model.
train_dataset, val_dataset: Training and validation Dataset objects.
learning_rate: The learning rate to train with
epochs: Number of training epochs. Note that previous training epochs
are considered to be done alreay, so this actually determines
the epochs to train in total rather than in this particaular
call.
layers: Allows selecting which layers to train. It can be:
- A regular expression to match layer names to train
- One of these predefined values:
heads: The RPN, classifier and mask heads of the network
all: All the layers
3+: Train Resnet stage 3 and up
4+: Train Resnet stage 4 and up
5+: Train Resnet stage 5 and up
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug)
augmentation. For example, passing imgaug.augmenters.Fliplr(0.5)
flips images right/left 50% of the time. You can pass complex
augmentations as well. This augmentation applies 50% of the
time, and when it does it flips images right/left half the time
and adds a Gaussian blur with a random sigma in range 0 to 5.
augmentation = imgaug.augmenters.Sometimes(0.5, [
imgaug.augmenters.Fliplr(0.5),
imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0))
])
custom_callbacks: Optional. Add custom callbacks to be called
with the keras fit_generator method. Must be list of type keras.callbacks.
no_augmentation_sources: Optional. List of sources to exclude for
augmentation. A source is string that identifies a dataset and is
defined in the Dataset class.
"""
首先對模型設置進行準備。
assert self.mode == "training", "Create model in training mode." # Pre-defined layer regular expressions layer_regex = { # all layers but the backbone "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # From a specific Resnet stage and up "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # All layers "all": ".*", } if layers in layer_regex.keys(): layers = layer_regex[layers] # Data generators train_generator = data_generator(train_dataset, self.config, shuffle=True, augmentation=augmentation, batch_size=self.config.BATCH_SIZE, no_augmentation_sources=no_augmentation_sources) val_generator = data_generator(val_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE) # Create log_dir if it does not exist if not os.path.exists(self.log_dir): os.makedirs(self.log_dir)
這裏主要的步驟就是
# Callbacks
callbacks = [
keras.callbacks.TensorBoard(log_dir=self.log_dir,
histogram_freq=0, write_graph=True, write_images=False),
keras.callbacks.ModelCheckpoint(self.checkpoint_path,
verbose=0, save_weights_only=True),
]
# Add custom callbacks to the list
if custom_callbacks:
callbacks += custom_callbacks
# Train
log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate))
log("Checkpoint Path: {}".format(self.checkpoint_path))
self.set_trainable(layers)
self.compile(learning_rate, self.config.LEARNING_MOMENTUM)
# Work-around for Windows: Keras fails on Windows when using
# multiprocessing workers. See discussion here:
# https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009
if os.name is 'nt':
workers = 0
else:
workers = multiprocessing.cpu_count() # 單機默認爲0
def compile(self, learning_rate, momentum): """Gets the model ready for training. Adds losses, regularization, and metrics. Then calls the Keras compile() function. """ # Optimizer object optimizer = keras.optimizers.SGD( lr=learning_rate, momentum=momentum, clipnorm=self.config.GRADIENT_CLIP_NORM) # Add Losses # First, clear previously set losses to avoid duplication self.keras_model._losses = [] self.keras_model._per_input_losses = {} loss_names = [ "rpn_class_loss", "rpn_bbox_loss", "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] for name in loss_names: layer = self.keras_model.get_layer(name) if layer.output in self.keras_model.losses: continue loss = ( tf.reduce_mean(layer.output, keep_dims=True) * self.config.LOSS_WEIGHTS.get(name, 1.)) self.keras_model.add_loss(loss) # Add L2 Regularization # Skip gamma and beta weights of batch normalization layers. reg_losses = [ keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) for w in self.keras_model.trainable_weights if 'gamma' not in w.name and 'beta' not in w.name] self.keras_model.add_loss(tf.add_n(reg_losses)) # Compile self.keras_model.compile( optimizer=optimizer, loss=[None] * len(self.keras_model.outputs)) # Add metrics for losses for name in loss_names: if name in self.keras_model.metrics_names: continue layer = self.keras_model.get_layer(name) self.keras_model.metrics_names.append(name) loss = ( tf.reduce_mean(layer.output, keepdims=True) * self.config.LOSS_WEIGHTS.get(name, 1.)) self.keras_model.metrics_tensors.append(loss)
def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): """Sets model layers as trainable if their names match the given regular expression. """ # Print message on the first call (but not on recursive calls) if verbose > 0 and keras_model is None: log("Selecting layers to train") keras_model = keras_model or self.keras_model # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers for layer in layers: # Is the layer a model? if layer.__class__.__name__ == 'Model': # 不一樣層隸屬不一樣的class,但Model class是單一的 print("In model: ", layer.name) self.set_trainable( layer_regex, keras_model=layer, indent=indent + 4) continue if not layer.weights: continue # Is it trainable? trainable = bool(re.fullmatch(layer_regex, layer.name)) # Update layer. If layer is a container, update inner layer. if layer.__class__.__name__ == 'TimeDistributed': layer.layer.trainable = trainable else: layer.trainable = trainable # Print trainable layer names if trainable and verbose > 0: log("{}{:20} ({})".format(" " * indent, layer.name, layer.__class__.__name__))
最簡單的一步了,調用keras接口訓練便可,上一步定義的callbacks也是在這裏傳入
self.keras_model.fit_generator( train_generator, initial_epoch=self.epoch, epochs=epochs, steps_per_epoch=self.config.STEPS_PER_EPOCH, callbacks=callbacks, validation_data=val_generator, validation_steps=self.config.VALIDATION_STEPS, max_queue_size=100, workers=workers, use_multiprocessing=True, ) self.epoch = max(self.epoch, epochs)
至此,train方法便自動的開始了模型的訓練工做。