經過持續實例,來感覺mlab對數據可視化的方便性
import numpy as np from mayavi import mlab x,y,z = np.ogrid[-10:10:20j,-10:10:20j,-10:10:20j] s = np.sin(x*y*z)/(x*y*z) mlab.contour3d(s) #等值面繪製 mlab.show()
import numpy as np from mayavi import mlab x,y,z = np.ogrid[-10:10:20j,-10:10:20j,-10:10:20j] s = np.sin(x*y*z)/(x*y*z) #繪製兩個方向的切平面 mlab.pipeline.image_plane_widget(mlab.pipeline.scalar_field(s), #scalar_field得到數據的標量數據場 plane_orientation="x_axes", #設置切平面的方向 slice_index=10 ) mlab.pipeline.image_plane_widget(mlab.pipeline.scalar_field(s), plane_orientation="y_axes", slice_index=10 ) #爲這個數據繪製外框 mlab.outline() mlab.show()
import numpy as np from mayavi import mlab x,y,z = np.ogrid[-10:10:20j,-10:10:20j,-10:10:20j] s = np.sin(x*y*z)/(x*y*z) src = mlab.pipeline.scalar_field(s) #創建標量場數據 mlab.pipeline.iso_surface(src,contours=[s.min()+0.1*s.ptp(),],opacity=0.1) #iso_surface對輸入體繪製其等值面,記得設置透明度,不然內部數據將被外部遮擋 mlab.pipeline.iso_surface(src,contours=[s.max()-0.1*s.ptp(),]) #也可使用等值面iso_surface,來觀察必定範圍內的數據 #繪製切平面 mlab.pipeline.image_plane_widget(src, #使用切平面來觀察某一平面的數據細節 plane_orientation="z_axes", #設置切平面的方向 slice_index=10 ) mlab.show()
import numpy as np from mayavi import mlab x,y,z = np.mgrid[0:1:20j,0:1:20j,0:1:20j] #u,v,w是在點x,y,z處的矢量數據 u = np.sin(np.pi*x)*np.cos(np.pi*z) v = -2*np.sin(np.pi*x)*np.cos(2*np.pi*z) w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z) mlab.quiver3d(u,v,w) #quiver3d能夠在數據點處畫出箭頭 mlab.outline() mlab.show()
上面數據過於密集:可使用降採樣:科學計算三維可視化---TVTK庫可視化實例
import numpy as np from mayavi import mlab x,y,z = np.mgrid[0:1:20j,0:1:20j,0:1:20j] #u,v,w是在點x,y,z處的矢量數據 u = np.sin(np.pi*x)*np.cos(np.pi*z) v = -2*np.sin(np.pi*x)*np.cos(2*np.pi*z) w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z) src = mlab.pipeline.vector_field(u,v,w) #pipeline的vectors構建了矢量域 mlab.pipeline.vectors(src,mask_points=10,scale_factor=2.0) #mask_points沒10個數據點選取一個,scale_factor放縮比率2.0 mlab.show()
import numpy as np from mayavi import mlab x,y,z = np.mgrid[0:1:20j,0:1:20j,0:1:20j] #u,v,w是在點x,y,z處的矢量數據 u = np.sin(np.pi*x)*np.cos(np.pi*z) v = -2*np.sin(np.pi*x)*np.cos(2*np.pi*z) w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z) src = mlab.pipeline.vector_field(u,v,w) #pipeline的vectors構建了矢量域 mlab.pipeline.vector_cut_plane(src,mask_points=10,scale_factor=2.0) #mask_points沒10個數據點選取一個,scale_factor放縮比率2.0 mlab.show()
級數是矢量域中的重要參數,他能夠顯示數量的法線等值面,咱們經過計算矢量法向獲得一個標量域
import numpy as np from mayavi import mlab x,y,z = np.mgrid[0:1:20j,0:1:20j,0:1:20j] #u,v,w是在點x,y,z處的矢量數據 u = np.sin(np.pi*x)*np.cos(np.pi*z) v = -2*np.sin(np.pi*x)*np.cos(2*np.pi*z) w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z) src = mlab.pipeline.vector_field(u,v,w) magnitude = mlab.pipeline.extract_vector_norm(src) #extract_vector_norm經過計算矢量法向獲得一個標量域 mlab.pipeline.iso_surface(magnitude,contours=[2.0,0.5]) #構建等值面 mlab.outline() mlab.show()
import numpy as np from mayavi import mlab x,y,z = np.mgrid[0:1:20j,0:1:20j,0:1:20j] #u,v,w是在點x,y,z處的矢量數據 u = np.sin(np.pi*x)*np.cos(np.pi*z) v = -2*np.sin(np.pi*x)*np.cos(2*np.pi*z) w = np.cos(np.pi*x)*np.sin(np.pi*z) + np.cos(np.pi*y)*np.sin(2*np.pi*z) flow = mlab.flow(u,v,w,seed_scale=1, seed_resolution=5, integration_direction="both") mlab.outline() mlab.show()
爲矢量場數據給出有意義的矢量觀測是比較有困難的工做,所以一般咱們須要使用不一樣的根據,對矢量數據進行可視化
#等值面 iso = mlab.pipeline.iso_surface(magnitude,contours=[2.0,],opacity=0.3) #構建等值面 #矢量場 vec = mlab.pipeline.vectors(magnitude,mask_points=40,line_width=1, color=(0.8,0.8,0.8), scale_factor=4.) #矢量場流線 flow = mlab.pipeline.streamline(magnitude,seedtype="plane", seed_visible=False, seed_scale=0.5, seed_resolution=1, linetype="ribbon") #矢量場切平面 vcp = mlab.pipeline.vector_cut_plane(magnitude,mask_points=2, scale_factor=4, colormap="jet", plane_orientation="x_axes")