百度百科: 貝塞爾曲線(Bézier curve),又稱貝茲曲線或貝濟埃曲線,是應用於二維圖形應用程序的數學曲線。通常的矢量圖形軟件經過它來精確畫出曲線,貝茲曲線由線段與節點組成,節點是可拖動的支點,線段像可伸縮的皮筋,咱們在繪圖工具上看到的鋼筆工具就是來作這種矢量曲線的。貝塞爾曲線是計算機圖形學中至關重要的參數曲線,在一些比較成熟的位圖軟件中也有貝塞爾曲線工具,如PhotoShop等。在Flash4中尚未完整的曲線工具,而在Flash5裏面已經提供出貝塞爾曲線工具。
如圖當畫圓時係數M約等於0.55228475,繪製時調用cubicTo(p1.x,p1.y,p2.x,p2.y,p3.x,p3.y)進行繪製,繪製時以圓心爲圓點,x軸、y軸爲線劃分紅4分,進行繪製。html
void _canvasBesselPath(Path path) { Point p1 = Point(x: radius*2,y: radius); Point p2 = Point(x: radius,y: radius*2); Point p3 = Point(x: 0,y: radius); Point p4 = Point(x: radius,y: 0); if (isToRight) { if (percent <= 0.2) { p1.x = radius*2 + radius*percent/0.2; } else if (percent <= 0.4) { p4.x = p2.x = radius + radius*(percent-0.2)/0.2; p1.x = p2.x + radius*2; } else if (percent <= 0.6) { p4.x = p2.x = radius*2 ; p1.x = radius*4 - radius*(percent - 0.4)/0.2; } else if (percent <= 0.8) { p4.x = p2.x = radius*2 - radius*(percent - 0.6)/0.2; p1.x = p2.x+radius; } else if (percent <= 0.9) { p3.x = radius*(percent - 0.8)/0.3; p4.x = p2.x = radius; p1.x = radius*2; } else if (percent <= 1.0) { p3.x = radius*(1 - percent)/0.3; p4.x = p2.x = radius; p1.x = radius*2; } } else { if (percent <= 0.2) { p3.x = - radius*percent/0.2; } else if (percent <= 0.4) { p3.x = -radius - radius*(percent-0.2)/0.2; p4.x = p2.x = p3.x + 2*radius; } else if (percent <= 0.6) { p3.x = radius*(percent - 0.4)/0.2 - radius*2; p4.x = p2.x = 0; } else if (percent <= 0.8) { p3.x = -radius+radius*(percent - 0.6)/0.2; p4.x = p2.x = p3.x + radius; p1.x = p2.x + radius*2 - radius*(percent - 0.6)/0.2; } else if (percent <= 0.9) { p1.x = radius*2 - radius*(percent - 0.8)/0.3; } else if (percent <= 1.0) { p1.x = radius*2 - radius*(1 - percent)/0.3; } } final p1Radius = p2.y - p1.y; final p24LeftRadius = p2.x - p3.x; final p24RightRadius = p1.x - p2.x; final p3Radius = p2.y - p3.y; path.moveTo(p1.x, p1.y); path.cubicTo( p1.x, p1.y + p1Radius*M, p2.x + p24RightRadius*M, p2.y, p2.x, p2.y ); path.cubicTo( p2.x - p24LeftRadius*M, p2.y, p3.x, p3.y + p3Radius*M, p3.x, p3.y ); path.cubicTo( p3.x, p3.y - p3Radius*M, p4.x - p24LeftRadius*M, p4.y, p4.x, p4.y ); path.cubicTo( p4.x + p24RightRadius*M, p4.y, p1.x , p1.y - p1Radius*M, p1.x, p1.y ); }
在UI中國上看到了一個不錯的設計,裏面也涉及貝塞爾曲線 全手勢操做燈的demo,這裏的貝塞爾曲線p二、p4的Y軸向中間作一個伸縮就能夠。