R中矩陣運算

# 數據產生
# rnorm(n, mean = 0, sd = 1) 正態分佈的隨機數(r 表明隨機,能夠替換成dnorm, pnorm, qnorm 做不一樣計算。r= random = 隨機, d= density = 密度, p= probability = 機率 , q =quantile = 分位)
# runif(n, min = 0, max = 1) 平均分佈的隨機數
# rep(1,5) 把1重複5次
# scale(1:5) 標準化數據
> a <- c(rnorm(5), rnorm(5,1), runif(5), runif(5,-1,1), 1:5, rep(0,5), c(2,10,11,13,4), scale(1:5)[1:5])
> a
 [1] -0.41253556  0.12192929 -0.47635888 -0.97171653  1.09162243  1.87789657
 [7] -0.11717937  2.92953522  1.33836620 -0.03269026  0.87540920  0.13005744
[13]  0.11900686  0.76663940  0.28407356 -0.91251181  0.17997973  0.50452258
[19]  0.25961316 -0.58052230  1.00000000  2.00000000  3.00000000  4.00000000
[25]  5.00000000  0.00000000  0.00000000  0.00000000  0.00000000  0.00000000
[31]  2.00000000 10.00000000 11.00000000 13.00000000  4.00000000 -1.26491106
[37] -0.63245553  0.00000000  0.63245553  1.26491106
> a <- matrix(a, ncol=5, byrow=T)
> a
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
[3,]  0.8754092  0.1300574  0.1190069  0.7666394  0.28407356
[4,] -0.9125118  0.1799797  0.5045226  0.2596132 -0.58052230
[5,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
[6,]  0.0000000  0.0000000  0.0000000  0.0000000  0.00000000
[7,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
[8,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
 
# 求行的加和
> rowSums(a)
[1] -0.6470593  5.9959284  2.1751865 -0.5489186 15.0000000  0.0000000 40.0000000
[8]  0.0000000

# 去除所有爲0的行
> a <- a[rowSums(abs(a))!=0,]
> a
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
[3,]  0.8754092  0.1300574  0.1190069  0.7666394  0.28407356
[4,] -0.9125118  0.1799797  0.5045226  0.2596132 -0.58052230
[5,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
[6,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
[7,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
 
# 矩陣運算,R默認針對整個數據進行常見運算
# 全部值都乘以2
> a * 2
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,] -0.8250711  0.2438586 -0.9527178 -1.9434331  2.18324487
[2,]  3.7557931 -0.2343587  5.8590704  2.6767324 -0.06538051
[3,]  1.7508184  0.2601149  0.2380137  1.5332788  0.56814712
[4,] -1.8250236  0.3599595  1.0090452  0.5192263 -1.16104460
[5,]  2.0000000  4.0000000  6.0000000  8.0000000 10.00000000
[6,]  4.0000000 20.0000000 22.0000000 26.0000000  8.00000000
[7,] -2.5298221 -1.2649111  0.0000000  1.2649111  2.52982213
 
# 全部值取絕對值,再取對數 (取對數前通常加一個數避免對0或負值取對數)
> log2(abs(a)+1)
          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.4982872 0.1659818 0.5620435 0.9794522 1.0646224
[2,] 1.5250147 0.1598608 1.9743587 1.2255009 0.0464076
[3,] 0.9072054 0.1763961 0.1622189 0.8210076 0.3607278
[4,] 0.9354687 0.2387621 0.5893058 0.3329807 0.6604014
[5,] 1.0000000 1.5849625 2.0000000 2.3219281 2.5849625
[6,] 1.5849625 3.4594316 3.5849625 3.8073549 2.3219281
[7,] 1.1794544 0.7070437 0.0000000 0.7070437 1.1794544
 
# 取出最大值、最小值、行數、列數
> max(a)
[1] 13
> min(a)
[1] -1.264911
> nrow(a)
[1] 7
> ncol(a)
[1] 5
 
# 增長一列或一行
# cbind: column bind
> cbind(a, 1:7)
           [,1]       [,2]       [,3]       [,4]        [,5] [,6]
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243    1
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026    2
[3,]  0.8754092  0.1300574  0.1190069  0.7666394  0.28407356    3
[4,] -0.9125118  0.1799797  0.5045226  0.2596132 -0.58052230    4
[5,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000    5
[6,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000    6
[7,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106    7
> cbind(a, seven=1:7)
                                                             seven
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243     1
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026     2
[3,]  0.8754092  0.1300574  0.1190069  0.7666394  0.28407356     3
[4,] -0.9125118  0.1799797  0.5045226  0.2596132 -0.58052230     4
[5,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000     5
[6,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000     6
[7,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106     7
 
# rbind: row bind
> rbind(a,1:5)
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
[3,]  0.8754092  0.1300574  0.1190069  0.7666394  0.28407356
[4,] -0.9125118  0.1799797  0.5045226  0.2596132 -0.58052230
[5,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
[6,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
[7,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
[8,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
 
# 計算每一行的mad (中值絕對誤差,通常認爲比方差的魯棒性更強,更少受異常值的影響,更能反映數據間的差別)1表示矩陣行,2表示矩陣列,也能夠是c(1,2)
> apply(a,1,mad)
[1] 0.7923976 2.0327283 0.2447279 0.4811672 1.4826000 4.4478000 0.9376786
 
# 計算每一行的var (方差)
# apply表示對數據(第一個參數)的每一行 (第二個參數賦值爲1) 或每一列 (2)操做。最後返回一個列表
> apply(a,1,var)
[1]  0.6160264  1.6811161  0.1298913  0.3659391  2.5000000 22.5000000  1.0000000
 
# 計算每一列的平均值
> apply(a,2,mean)
[1] 0.4519068 1.6689045 2.4395294 2.7179083 1.5753421
 
# 取出中值絕對誤差大於0.5的行
> b = a[apply(a,1,mad)>0.5,]
> b
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
[3,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
[4,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
[5,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
 
# 矩陣按照mad的大小降序排列
> c = b[order(apply(b,1,mad), decreasing=T),]
> c
           [,1]       [,2]       [,3]       [,4]        [,5]
[1,]  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
[2,]  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
[3,]  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
[4,] -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
[5,] -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
 
> rownames(c) <- paste('Gene', letters[1:5], sep="_")
> colnames(c) <- toupper(letters[1:5])
> c
                A          B          C          D           E
Gene_a  2.0000000 10.0000000 11.0000000 13.0000000  4.00000000
Gene_b  1.8778966 -0.1171794  2.9295352  1.3383662 -0.03269026
Gene_c  1.0000000  2.0000000  3.0000000  4.0000000  5.00000000
Gene_d -1.2649111 -0.6324555  0.0000000  0.6324555  1.26491106
Gene_e -0.4125356  0.1219293 -0.4763589 -0.9717165  1.09162243
 
# 矩陣轉置
> expr = t(c)
> expr
  Gene_a      Gene_b Gene_c     Gene_d     Gene_e
A      2  1.87789657      1 -1.2649111 -0.4125356
B     10 -0.11717937      2 -0.6324555  0.1219293
C     11  2.92953522      3  0.0000000 -0.4763589
D     13  1.33836620      4  0.6324555 -0.9717165
E      4 -0.03269026      5  1.2649111  1.0916224
 
# 矩陣值的替換
> expr2 = expr
> expr2[expr2<0] = 0
> expr2
  Gene_a   Gene_b Gene_c    Gene_d    Gene_e
A      2 1.877897      1 0.0000000 0.0000000
B     10 0.000000      2 0.0000000 0.1219293
C     11 2.929535      3 0.0000000 0.0000000
D     13 1.338366      4 0.6324555 0.0000000
E      4 0.000000      5 1.2649111 1.0916224
 
# 矩陣中只針對某一列替換
# expr2是個矩陣不是數據框,不能使用列名字索引
> expr2[expr2$Gene_b<1, "Gene_b"] <- 1
Error in expr2$Gene_b : $ operator is invalid for atomic vectors
# str是一個最爲經常使用、好用的查看變量信息的工具,尤爲是對特別複雜的變量,能夠看清其層級結構,便於提取數據
> str(expr2)
 num [1:5, 1:5] 2 10 11 13 4 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:5] "A" "B" "C" "D" ...
  ..$ : chr [1:5] "Gene_a" "Gene_b" "Gene_c" "Gene_d" ...
 
# 轉換爲數據框,再進行相應的操做
> expr2 <- as.data.frame(expr2)
> str(expr2)
'data.frame':    5 obs. of  5 variables:
 $ Gene_a: num  2 10 11 13 4
 $ Gene_b: num  1.88 1 2.93 1.34 1
 $ Gene_c: num  1 2 3 4 5
 $ Gene_d: num  0 0 0 0.632 1.265
 $ Gene_e: num  0 0.122 0 0 1.092
> expr2[expr2$Gene_b<1, "Gene_b"] <- 1
> expr2
  Gene_a   Gene_b Gene_c    Gene_d    Gene_e
A      2 1.877897      1 0.0000000 0.0000000
B     10 1.000000      2 0.0000000 0.1219293
C     11 2.929535      3 0.0000000 0.0000000
D     13 1.338366      4 0.6324555 0.0000000
E      4 1.000000      5 1.2649111 1.0916224
R中矩陣篩選合併
# 讀入樣品信息
> sampleInfo = "Samp;Group;Genotype
+ A;Control;WT
+ B;Control;WT
+ D;Treatment;Mutant
+ C;Treatment;Mutant
+ E;Treatment;WT
+ F;Treatment;WT"
> phenoData = read.table(text=sampleInfo, sep=";", header=T, row.names=1, quote="")
> phenoData
      Group Genotype
A   Control       WT
B   Control       WT
D Treatment   Mutant
C Treatment   Mutant
E Treatment       WT
F Treatment       WT
 
# 把樣品信息按照基因表達矩陣中的樣品信息排序,並只保留有基因表達信息的樣品
> phenoData[match(rownames(expr), rownames(phenoData)),]
      Group Genotype
A   Control       WT
B   Control       WT
C Treatment   Mutant
D Treatment   Mutant
E Treatment       WT
 
# 注意順序,%in%比match更好理解一些
> phenoData = phenoData[rownames(phenoData) %in% rownames(expr),]
> phenoData
      Group Genotype
A   Control       WT
B   Control       WT
C Treatment   Mutant
D Treatment   Mutant
E Treatment       WT
 
# 合併矩陣
# by=0 表示按照行的名字排序
# by=columnname 表示按照共有的某一列排序
# 合併後多出了新的一列Row.names
> merge_data = merge(expr, phenoData, by=0, all.x=T)
> merge_data
  Row.names Gene_a      Gene_b Gene_c     Gene_d     Gene_e     Group Genotype
1         A      2  1.87789657      1 -1.2649111 -0.4125356   Control       WT
2         B     10 -0.11717937      2 -0.6324555  0.1219293   Control       WT
3         C     11  2.92953522      3  0.0000000 -0.4763589 Treatment   Mutant
4         D     13  1.33836620      4  0.6324555 -0.9717165 Treatment   Mutant
5         E      4 -0.03269026      5  1.2649111  1.0916224 Treatment       WT
 
> rownames(merge_data) <- merge_data$Row.names
> merge_data 
  Row.names Gene_a      Gene_b Gene_c     Gene_d     Gene_e     Group Genotype
A         A      2  1.87789657      1 -1.2649111 -0.4125356   Control       WT
B         B     10 -0.11717937      2 -0.6324555  0.1219293   Control       WT
C         C     11  2.92953522      3  0.0000000 -0.4763589 Treatment   Mutant
D         D     13  1.33836620      4  0.6324555 -0.9717165 Treatment   Mutant
E         E      4 -0.03269026      5  1.2649111  1.0916224 Treatment       WT
 
# 去除一列;-1表示去除第一列
> merge_data = merge_data[,-1]
> merge_data
  Gene_a      Gene_b Gene_c     Gene_d     Gene_e     Group Genotype
A      2  1.87789657      1 -1.2649111 -0.4125356   Control       WT
B     10 -0.11717937      2 -0.6324555  0.1219293   Control       WT
C     11  2.92953522      3  0.0000000 -0.4763589 Treatment   Mutant
D     13  1.33836620      4  0.6324555 -0.9717165 Treatment   Mutant
E      4 -0.03269026      5  1.2649111  1.0916224 Treatment       WT
 
# 提取出全部的數值列。sapply()對列表或者向量使用函數
> merge_data[sapply(merge_data, is.numeric)]
  Gene_a      Gene_b Gene_c     Gene_d     Gene_e
A      2  1.87789657      1 -1.2649111 -0.4125356
B     10 -0.11717937      2 -0.6324555  0.1219293
C     11  2.92953522      3  0.0000000 -0.4763589
D     13  1.33836620      4  0.6324555 -0.9717165
E      4 -0.03269026      5  1.2649111  1.0916224
相關文章
相關標籤/搜索