數據分析 大數據之路 六 matplotlib 繪圖工具

 

散點圖

#導入必要的模塊
import numpy as np
import matplotlib.pyplot as plt
#產生測試數據
x = np.arange(1,10)
y = x
fig = plt.figure()
ax1 = fig.add_subplot(111)
#設置標題
ax1.set_title('Scatter Plot')
#設置X軸標籤
plt.xlabel('X')
#設置Y軸標籤
plt.ylabel('Y')
#畫散點圖
ax1.scatter(x,y,c = 'r',marker = 'o')
#設置圖標
plt.legend('x1')
#顯示所畫的圖
plt.show()

  

 

 

折線圖

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2 * np.pi, 10)
y1, y2 = np.sin(x), np.cos(x)

plt.plot(x, y1, 'ro-')
plt.plot(x, y2, 'g*:', ms=10)
plt.show()

  

 

柱狀圖

import numpy as np
import matplotlib.pyplot as plt
size = 5
a = np.random.random(size)
b = np.random.random(size)
c = np.random.random(size)
d = np.random.random(size)
x = np.arange(size)

total_width, n = 0.8, 3     # 有多少個類型,只需更改n便可
width = total_width / n
x = x - (total_width - width) / 2

plt.bar(x, a,  width=width, label='a')
plt.bar(x + width, b, width=width, label='b')
plt.bar(x + 2 * width, c, width=width, label='c')
plt.legend()
plt.show()

  

 

餅狀圖

import numpy as np
import matplotlib.pyplot as plt
 
labels = 'A', 'B', 'C', 'D'
fracs = [15, 30.55, 44.44, 10]
explode = [0, 0.1, 0, 0] # 0.1 凸出這部分,
plt.axes(aspect=1)  # set this , Figure is round, otherwise it is an ellipse
#autopct ,show percet
plt.pie(x=fracs, labels=labels, explode=explode,autopct='%3.1f %%',
        shadow=True, labeldistance=1.1, startangle = 90,pctdistance = 0.6
 
        )
'''
labeldistance,文本的位置離遠點有多遠,1.1指1.1倍半徑的位置
autopct,圓裏面的文本格式,%3.1f%%表示小數有三位,整數有一位的浮點數
shadow,餅是否有陰影
startangle,起始角度,0,表示從0開始逆時針轉,爲第一塊。通常選擇從90度開始比較好看
pctdistance,百分比的text離圓心的距離
patches, l_texts, p_texts,爲了獲得餅圖的返回值,p_texts餅圖內部文本的,l_texts餅圖外label的文本
'''
 
plt.show()

  

 

 

氣泡圖

import pandas as pd
from matplotlib import pyplot as plt
crime=pd.read_csv("crimeRatesByState2005.csv")
fig,ax=plt.subplots(figsize=(10,5))

crime=crime[1:]
population=crime["population"].values
state=crime["state"].values
murder=crime["murder"].values
burglary=crime["burglary"].values

ax.scatter(murder,burglary,s=population/40000,alpha=0.6)
ax.set(xlim=(0,11),ylim=(200,1300),\
       xlabel="Murder per 100,000 population",\
       ylabel="Burglary per 100,000 population",\
       title="Murder & Burglary in USA")
for i,j,z in zip(murder,burglary,state):
    ax.text(x=i-0.3,y=j-0.1,s=z,fontsize=7)
ax.spines["top"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["right"].set_visible(False)

plt.show()

  

 

 

 雷達圖

# encoding: utf-8
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['KaiTi']  # 顯示中文
labels = np.array([u'總場次', u'吃雞數', u'前十數',u'總擊殺']) # 標籤
dataLenth = 4  # 數據長度
data_radar = np.array([63, 1, 15, 13]) # 數據
angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False)  # 分割圓周長
data_radar = np.concatenate((data_radar, [data_radar[0]]))  # 閉合
angles = np.concatenate((angles, [angles[0]]))  # 閉合
plt.polar(angles, data_radar, 'bo-', linewidth=1)  # 作極座標系
plt.thetagrids(angles * 180/np.pi, labels)  # 作標籤
plt.fill(angles, data_radar, facecolor='r', alpha=0.25)# 填充
plt.ylim(0, 70)
plt.title(u'2018的絕地求生戰績')
plt.show()

  

 

 

 

 

 

 

 

 


import pandas as pd import numpy as np import matplotlib.pyplot as plt # 用來正常顯示中文標籤 plt.rcParams['font.sans-serif']=['SimHei'] # 用來正常顯示負號 plt.rcParams['axes.unicode_minus']=False # 讀取本地 unrate.csv 文件 unrate = pd.read_csv('unrate.csv') print(unrate.head()) # pd.to_datetime() 將數據轉換成datetime類型 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) # plt.plot()畫折線圖 plt.plot() # plt.show()顯示圖形 plt.show()

  

       DATE  VALUE
0  1948/1/1    3.4
1  1948/2/1    3.8
2  1948/3/1    4.0
3  1948/4/1    3.9
4  1948/5/1    3.5 DATE VALUE 0 1948-01-01 3.4 1 1948-02-01 3.8 2 1948-03-01 4.0 3 1948-04-01 3.9 4 1948-05-01 3.5 5 1948-06-01 3.6 6 1948-07-01 3.6 7 1948-08-01 3.9 8 1948-09-01 3.8 9 1948-10-01 3.7 10 1948-11-01 3.8 11 1948-12-01 4.0

 

 

 

 

 

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif']=['SimHei'] 
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False  

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')



first_twelve = unrate[0:12]
print (first_twelve)
plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
plt.show()

  

         DATE  VALUE
0    1948/1/1    3.4
1    1948/2/1    3.8
2    1948/3/1    4.0
3    1948/4/1    3.9
4    1948/5/1    3.5
5    1948/6/1    3.6
6    1948/7/1    3.6
7    1948/8/1    3.9
8    1948/9/1    3.8
9   1948/10/1    3.7
10  1948/11/1    3.8
11  1948/12/1    4.0

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif']=['SimHei'] 
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False  

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')



first_twelve = unrate[0:12]
plt.plot(first_twelve['DATE'], first_twelve['VALUE'])

# plt.xticks設置x軸座標,rotation設置x刻度旋轉角度
plt.xticks(rotation=45)
#print (help(plt.xticks))
plt.show()

  

 

 

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif']=['SimHei'] 
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False  

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')



first_twelve = unrate[0:12]
plt.plot(first_twelve['DATE'], first_twelve['VALUE'])

plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
# plt.xticks設置x軸座標,rotation設置x刻度旋轉角度
plt.xticks(rotation=90)

# plt.xlabel()設置x軸標題
#plt.xlabel('Month')
plt.xlabel('月份')
#plt.ylabel('Unemployment rate')
plt.ylabel('失業率')
# plt.title()設置標題
plt.title('1948年失業率走勢')
plt.show()

  

 

 

2.子圖

在一張紙上畫多張圖

import matplotlib.pyplot as plt
# 建立畫板
fig = plt.figure()

#.add_subplot添加子圖
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
#ax3 = fig.add_subplot(2,2,3)
ax4 = fig.add_subplot(2,2,4)
#ax4 = fig.add_subplot(224)
plt.show()

  

 

 

import matplotlib.pyplot as plt
import numpy as np

# 建立畫板
fig = plt.figure()
#fig = plt.figure(figsize=(8, 15))#figsize=(8, 15)設置畫板大小

#.add_subplot添加子圖

ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
ax1.plot(np.random.randint(1,5,5), np.arange(5))
# np.random.randint(low,high,size),生成在[low,high)隨機整數,low默認是0,size是元素個數,size是元組時,生成矩陣
ax2.plot(np.arange(10)*3, np.arange(10))
plt.show()

  

 

 

# 隨機生成 5 個整數的 5 個整數
print(np.random.randint(1,5,5))

# 隨機生成 1 到 5 的整數, 3 行 3 列
print(np.random.randint(1,5,(3,3)))

  

[2 3 2 2 2]
[[4 4 2]
 [1 2 4]
 [1 3 2]]

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus'] = False

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')


unrate['DATE'] = pd.to_datetime(unrate['DATE'])

# dt.month獲取datetime類型值的月份
unrate['MONTH'] = unrate['DATE'].dt.month

fig = plt.figure(figsize=(6,3))

plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='r')
plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue')

plt.show()

  

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus'] = False

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')


unrate['DATE'] = pd.to_datetime(unrate['DATE'])

# dt.month獲取datetime類型值的月份
unrate['MONTH'] = unrate['DATE'].dt.month


fig = plt.figure(figsize=(10, 6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i * 12
    end_index = (i + 1) * 12
    subset = unrate[start_index:end_index]
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i])  # c設置顏色

plt.show()

  

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus'] = False

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')


unrate['DATE'] = pd.to_datetime(unrate['DATE'])

# dt.month獲取datetime類型值的月份
unrate['MONTH'] = unrate['DATE'].dt.month


fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    label = str(1948 + i)
    # linewidth設置線寬
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label,linewidth=10)
plt.legend(loc='upper left')
plt.xticks(size=15)
plt.yticks(size=15)
plt.xlabel('Month, Integer',size=20)

plt.ylabel('Unemployment Rate, Percent')
plt.title('Monthly Unemployment Trends, 1948-1952')

plt.show()

  

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus'] = False

# 讀取本地 unrate.csv 文件
unrate = pd.read_csv('unrate.csv')


unrate['DATE'] = pd.to_datetime(unrate['DATE'])

# dt.month獲取datetime類型值的月份
unrate['MONTH'] = unrate['DATE'].dt.month


plt.figure(figsize=(10,6))
x = np.arange(-2*np.pi,2*np.pi,0.01)
#x = np.arange(-2*np.pi,2*np.pi,0.01)
x1 = np.arange(-2*np.pi,2*np.pi,0.2)
y = np.sin(3*x1)/x1
y2 = np.sin(2*x)/x
y3 = np.sin(x)/x

# linestyle設置線的風格,marker設置點的風格
plt.plot(x1,y,c='b',linestyle='--',marker='^')
plt.plot(x,y2,c='r',linestyle='-.')
plt.plot(x,y3,c='g')

ax = plt.gca()  # 獲取Axes對象
#plt.gca().spines[]圖的邊框,set_color()設置邊框的顏色
#ax.spines['right'].set_color('none')

#ax.spines['top'].set_color('none')
#ax.xaxis.set_ticks_position('bottom')
# ax.spines['bottom']獲取下邊框,即x軸,set_position設置軸的位置
#ax.spines['bottom'].set_position(('data',0))
#ax.yaxis.set_ticks_position('left')

# #ax.spines['left']獲取左邊框,即y軸
#ax.spines['left'].set_position(('data',0))

# 設置要顯示的刻度值
#plt.xticks([-2*np.pi,-np.pi,0,np.pi,2*np.pi])

# 設置要顯示的刻度值,並將其進行替換成自定義字符串
#plt.xticks([-2*np.pi,-np.pi,0,np.pi,2*np.pi],['-2π','π','0','π','2π'],size=15)

# 設置x軸座標範圍
#plt.xlim((-np.pi,np.pi))

# 設置y軸座標範圍
#plt.ylim((0,3))
plt.show()

 

 

 

 

 3.柱形圖

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy import arange
li = [1.2, 2.2, 1.5, 4.5, 2.5] bar_positions = arange(5) + 1 print (bar_positions) print (type(bar_positions)) plt.figure(figsize=(10,6)) # plt.bar ()畫柱狀圖 plt.bar(bar_positions, li, 0.5) plt.show()

  

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy import arange

num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
li = [1.2, 2.2, 1.5, 4.5, 2.5]
bar_positions = arange(5) + 1
print (bar_positions)


plt.figure(figsize=(10,6))
plt.bar(bar_positions, li, 0.5,color=['r','g','b'])
plt.xticks(bar_positions,num_cols,rotation=0, size=10)
plt.xlabel('Rating Source')
plt.ylabel('Average Rating')
plt.title('Average User Rating For Avengers: Age of Ultron (2015)')
for x,y in zip(bar_positions,li):#設置在柱子上顯示文字註釋
    plt.text(x,y,'%.2f'%y,ha="center", va="bottom",size=14)
    #plt.text()設置添加圖中文本註釋,依次傳入座標和字符串內容,size設置字的大小
    #ha設置horizontalalignment水平對齊方式,va設置verticalalignment:垂直對齊方式
plt.show()

  

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy import arange

num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
li = [1.2, 2.2, 1.5, 4.5, 2.5]
bar_positions = arange(5) + 1
print (bar_positions)


bar_positions = arange(5) + 1
plt.figure(figsize=(10,6))
plt.barh(bar_positions,li, 0.5,color=['r','orange','y','g','k'])
plt.yticks(bar_positions,num_cols,rotation=0, size=10)
plt.xlabel('Average Rating')
plt.ylabel('Rating Source')
plt.title('Average User Rating For Avengers: Age of Ultron (2015)')
for x,y in zip(li,bar_positions):#設置在柱子上顯示文字註釋
    plt.text(x,y,'%.2f'%x,ha="left", va="center",size=14)
plt.show()

  

 

 

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from numpy import arange


# 用來正常顯示中文標籤
plt.rcParams['font.sans-serif']=['SimHei'] 
# 用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False  

pdData = pd.read_csv('pandas做業.csv')
positive = pdData[pdData['Admitted'] == 1] 
negative = pdData[pdData['Admitted'] == 0] 

fig = plt.figure(figsize=(10,5))
plt.scatter(positive['Exam1'], positive['Exam2'], s=30, c='b', marker='o', label='經過') 
# s設置點的大小,c設置顏色,marker設置點的形狀,label設置圖例
plt.scatter(negative['Exam1'], negative['Exam2'], s=30, c='r', marker='x', label='淘汰')
plt.legend()#顯示圖例
plt.xlabel('科目1分數')#設置橫座標標題
plt.ylabel('科目2分數')

  

相關文章
相關標籤/搜索