我的站點:www.mycookies.cn
/** * A hash table supporting full concurrency of retrievals and * adjustable expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * <tt>Hashtable</tt>. However, even though all operations are * thread-safe, retrieval operations do <em>not</em> entail locking, * and there is <em>not</em> any support for locking the entire table * in a way that prevents all access. This class is fully * interoperable with <tt>Hashtable</tt> in programs that rely on its * thread safety but not on its synchronization details. * * <p> Retrieval operations (including <tt>get</tt>) generally do not * block, so may overlap with update operations (including * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results * of the most recently <em>completed</em> update operations holding * upon their onset. For aggregate operations such as <tt>putAll</tt> * and <tt>clear</tt>, concurrent retrievals may reflect insertion or * removal of only some entries. Similarly, Iterators and * Enumerations return elements reflecting the state of the hash table * at some point at or since the creation of the iterator/enumeration. * They do <em>not</em> throw {@link ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * * <p> The allowed concurrency among update operations is guided by * the optional <tt>concurrencyLevel</tt> constructor argument * (default <tt>16</tt>), which is used as a hint for internal sizing. The * table is internally partitioned to try to permit the indicated * number of concurrent updates without contention. Because placement * in hash tables is essentially random, the actual concurrency will * vary. Ideally, you should choose a value to accommodate as many * threads as will ever concurrently modify the table. Using a * significantly higher value than you need can waste space and time, * and a significantly lower value can lead to thread contention. But * overestimates and underestimates within an order of magnitude do * not usually have much noticeable impact. A value of one is * appropriate when it is known that only one thread will modify and * all others will only read. Also, resizing this or any other kind of * hash table is a relatively slow operation, so, when possible, it is * a good idea to provide estimates of expected table sizes in * constructors. */
一個哈希表支持徹底併發的檢索和可更新的預期併發性。這個類服從與{@link java.util.Hashtable}相同的功能規範 包括對應於每種方法的版本 的HashTable的。可是,即便全部的操做都是 線程安全的檢索操做不須要加鎖, 而且沒有任何對鎖定整個表的支持, 阻止全部訪問的方式。這這個類在依賴線程安全性但不一樣步細節,在程序中徹底與Hashtable 互操做。java
檢索操做(包括get )一般不會阻塞,所以可能會與更新操做併發 (添加 和刪除)。檢索反映結果 是最近完成更新操做持有在他們併發訪問時時。對於像<tt> putAll </ tt>這樣的集合操做 和<tt>清除</ tt>,併發檢索可能反映插入或 只刪除一些條目。一樣,迭代器和 枚舉返回反映散列表狀態的元素 在建立迭代器/枚舉時或以後的某個時間點。 它們不會<em>拋出ConcurrentModificationException。 可是,迭代器被設計爲一次只能由一個線程使用。node
更新操做中容許的併發性由指導 可選的concurrencyLevel構造函數參數(默認16 ),用做內部大小調整的提示。該 表內部分區以嘗試容許指示 沒有爭用的併發更新數量。由於安置 在散列表中基本上是隨機的,實際的併發會 變化。理想狀況下,您應該選擇一個值來容納儘量多的值線程將永遠同時修改表。用一個 明顯高於你須要的價值會浪費空間和時間 而顯着較低的值可能會致使線程爭用。但 在一個數量級內太高估計和低估 一般不會有太明顯的影響。值爲1 當知道只有一個線程會修改時適用 全部其餘人只會閱讀。此外,調整這個或任何其餘類型的 散列表是一個相對較慢的操做,因此,若是可能的話,在構造函數中提供預期表格大小的估計值的一個好主意。git
ConcurrentHashMap的內部類HashEntry github
//用來存儲鍵值對,與hashtable中不一樣的是 value設置爲volatile static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; HashEntry(int hash, K key, V value, HashEntry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } /** * Sets next field with volatile write semantics. (See above * about use of putOrderedObject.) */ final void setNext(HashEntry<K,V> n) { UNSAFE.putOrderedObject(this, nextOffset, n); } // Unsafe mechanics static final sun.misc.Unsafe UNSAFE; static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = HashEntry.class; nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } }
public V put(K key, V value) { Segment<K,V> s; if (value == null)//value不能爲null throw new NullPointerException(); int hash = hash(key);//第一次對key進行hash運算 int j = (hash >>> segmentShift) & segmentMask;//映射到hash表中的某個segment if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); //返回給定索引的Segment,建立它並在Segment表中(經過CAS)記錄(若是尚不存在)。 return s.put(key, hash, value, false); } private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; //若是當前索引對應segment不存在 if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // use segment 0 as prototype int cap = proto.table.length; float lf = proto.loadFactor; int threshold = (int)(cap * lf); HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck //建立一個Segment Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; } final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);//嘗試獲取鎖,當前線程獨家佔有,node賦值爲null,不然一直獲取鎖,直到獲取到鎖而後建立一個鍵值對並返回 V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock();//釋放鎖 } return oldValue; }
若是當前線程是該鎖的持有者,則保持計數遞減。 若是保持計數如今爲零,則鎖定被釋放。 若是當前線程不是該鎖的持有者,則拋出{@link IllegalMonitorStateException}數組
/** * Attempts to release this lock. * * <p>If the current thread is the holder of this lock then the hold * count is decremented. If the hold count is now zero then the lock * is released. If the current thread is not the holder of this * lock then {@link IllegalMonitorStateException} is thrown. * * @throws IllegalMonitorStateException if the current thread does not * hold this lock */ public void unlock() { sync.release(1); }
掃描包含給定key的節點 ,同時嘗試獲取鎖,若是找不到則建立並返回一個。返回後,保證持有當前鎖。安全
/** * Scans for a node containing given key while trying to * acquire lock, creating and returning one if not found. Upon * return, guarantees that lock is held. UNlike in most * methods, calls to method equals are not screened: Since * traversal speed doesn't matter, we might as well help warm * up the associated code and accesses as well. * * @return a new node if key not found, else null */ private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node while (!tryLock()) { HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
只有在當時沒有被另外一個線程佔用的狀況下才會獲取該鎖cookie
若是該鎖沒有被另外一個線程和另外一個線程佔用,則獲取該鎖 當即返回值爲true,將鎖定保持計數設置爲1。 即便此鎖已設置爲使用公平的順序策略,對 tryLock()調用將當即得到該鎖(若是該鎖可用),不管其餘線程當前是否正在等待鎖。 這種強制 行爲在某些狀況下是有用的,即便它違背了公平。 若是您想遵照此鎖的公平性設置,請使用 {@link #tryLock(long,TimeUnit)tryLock(0,TimeUnit.SECONDS)} 他們幾乎相同(它也檢測到中斷)。 若是當前線程已經擁有這個鎖,那麼保持計數增長1,方法返回{true}。 若是該鎖由另外一個線程保存,則此方法將當即以* {false}的值返回*。併發
public boolean tryLock() { return sync.nonfairTryAcquire(1); } final boolean nonfairTryAcquire(int acquires) { //獲取當前線程 final Thread current = Thread.currentThread(); int c = getState();//返回statue (state是voltile修飾的) if (c == 0) {//若是state==0,即當前鎖空閒 if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current);//設置當前線程擁有鎖 return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } protected final void setExclusiveOwnerThread(Thread t) { exclusiveOwnerThread = t; } protected final Thread getExclusiveOwnerThread() { return exclusiveOwnerThread; }
public int size() { // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // 獲取全部segment的鎖 } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j)//釋放全部segment的鎖 segmentAt(segments, j).unlock(); } } return overflow ? Integer.MAX_VALUE : size; }
總結:ConcurrentHashMap是線程安全的哈希表,它是經過「分段」來實現的。ConcurrentHashMap中包括了「Segment(分段)數組」,每一個Segment就是一個哈希表,並且也是可重入的互斥鎖。第一,Segment是哈希表表如今,Segment包含了「HashEntry數組」,而「HashEntry數組」中的每個HashEntry元素是一個單向鏈表。即Segment是經過鏈式哈希表。第二,Segment是可重入的互斥鎖表如今,Segment繼承於ReentrantLock,而ReentrantLock就是可重入的互斥鎖。對於ConcurrentHashMap的添加,刪除操做,在操做開始前,線程都會獲取Segment的互斥鎖;操做完畢以後,纔會釋放。而對於讀取操做,它是經過volatile去實現的,HashEntry數組是volatile類型的,而volatile能保證「即對一個volatile變量的讀,老是能看到(任意線程)對這個volatile變量最後的寫入」,即咱們總能讀到其它線程寫入HashEntry以後的值。 以上這些方式,就是ConcurrentHashMap線程安全的實現原理。app
經過分段方式減少的鎖的粒度,若是整個map使用一個鎖,則就不能並行地操做鍵值對。而ConcurrentHashMap將HashMap分解成段,每一個段有一把鎖,鎖的粒度就少了。可是與此同時,鎖的數量增多了。當須要訪問ConcurrentHashMap的全局屬性時(好比ConcurrentHashMap的size()方法),須要 得到 全部的Segment的鎖。dom
我的站點:www.mycookies.cn
github:https://github.com/liqianggh