流程圖java
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 視頻網站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站點統計 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站點統計 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 綜合門戶 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 綜合門戶 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
思路:map階段:將每一行按tab切分紅各字段,提取其中的手機號做爲輸出key,流量信息封裝到FlowBean對象中,做爲輸出的value算法
要點:自定義類型如何實現Hadoop的序列化接口apache
FlowBean:這種自定義數據類型必須實現Hadoop的序列化接口:Writable安全
實現其中的兩個方法:app
1.readFields(in)——反序列化方法ide
2.write(out)——序列化方法oop
reduce階段:遍歷一組數據的全部value(flowbean),進行累加,而後以手機號做爲key輸出,以總流量信息bean做爲value輸出。網站
1.FlowBean this
import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; /** * 本案例功能:演示自定義數據類型如何實現Hadoop的序列化接口 * 1,該類必定要保留空參構造器 * 2.write方法中輸出字段二進制數據的順序要與readFiles方法讀取數據的順序一致 */ public class FlowBean implements Writable { private int upFlow; private int dFlow; private String phone; private int amountFlow; public int getUpFlow() { return upFlow; } public void setUpFlow(int upFlow) { this.upFlow = upFlow; } public int getdFlow() { return dFlow; } public void setdFlow(int dFlow) { this.dFlow = dFlow; } public int getAmountFlow() { return amountFlow; } public void setAmountFlow(int amountFlow) { this.amountFlow = amountFlow; } public FlowBean() { } public FlowBean(int upFlow, int dFlow,String phone) { this.upFlow = upFlow; this.dFlow = dFlow; this.phone=phone; this.amountFlow=upFlow+dFlow; } /** * hadoop 系統在序列化該類的對象時要調用得方法 * @param dataOutput * @throws IOException */ public void write(DataOutput dataOutput) throws IOException { dataOutput.writeInt(upFlow); dataOutput.writeUTF(phone); dataOutput.writeInt(dFlow); dataOutput.writeInt(amountFlow); } /** * hadoop系統在反序列化時要調用的方法 * @param dataInput * @throws IOException */ public void readFields(DataInput dataInput) throws IOException { this.upFlow=dataInput.readInt(); this.phone=dataInput.readUTF(); this.dFlow=dataInput.readInt(); this.amountFlow=dataInput.readInt(); } @Override public String toString() { return this.upFlow+","+this.dFlow+","+this.amountFlow; } }
2.FlowCountMapper 搜索引擎
import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("\t"); String phone = fields[1]; int upFlow=Integer.parseInt(fields[fields.length-3]); int dFlow=Integer.parseInt(fields[fields.length-2]); context.write(new Text(phone),new FlowBean(upFlow,dFlow,phone)); } }
3.FlowCountReduce
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class FlowCountReduce extends Reducer<Text,FlowBean,Text,FlowBean> { /** * * @param key:手機號 * @param values:某個手機號所產生的全部訪問記錄中的流量數據 * @param context * @throws IOException * @throws InterruptedException */ @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { int upSum=0; int dSum=0; for(FlowBean value:values){ upSum +=value.getUpFlow(); dSum +=value.getdFlow(); } context.write(key,new FlowBean(upSum,dSum,key.toString())); } }
4.JobSubmitter
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class JobSubmitter{ public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(JobSubmitter.class); job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReduce.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); FileInputFormat.setInputPaths(job,new Path("F:\\mrdata\\flow\\input")); FileOutputFormat.setOutputPath(job,new Path("F:\\mrdata\\flow\\output")); boolean res = job.waitForCompletion(true); System.exit(res ? 0:-1); } }
5.JobSubmitter程序運行統計結果【手機號 上行流量 下行流量 總流量】
13480253104 180,180,360 13502468823 7335,110349,117684 13560436666 1116,954,2070 13560439658 2034,5892,7926 13602846565 1938,2910,4848 13660577991 6960,690,7650 13719199419 240,0,240 13726230503 2481,24681,27162 13726238888 2481,24681,27162 13760778710 120,120,240 13826544101 264,0,264 13922314466 3008,3720,6728 13925057413 11058,48243,59301 13926251106 240,0,240 13926435656 132,1512,1644 15013685858 3659,3538,7197 15920133257 3156,2936,6092 15989002119 1938,180,2118 18211575961 1527,2106,3633 18320173382 9531,2412,11943 84138413 4116,1432,5548
流程圖
代碼實現
1.ProvinceParttioner 自定義分區算法
/** * 本類提供給MapTask使用的 * MapTask經過這個類的getPartition方法,來計算它所產生的每一對kv數據該分發給那個reduce task */ public class ProvinceParttioner extends Partitioner<Text,FlowBean> { static HashMap<String,Integer>codeMap=new HashMap<String,Integer>(); static{ /** * 模擬數據 */ codeMap.put("135",0); codeMap.put("136",1); codeMap.put("137",2); codeMap.put("138",3); codeMap.put("139",4); } @Override public int getPartition(Text key, FlowBean value, int numPartitions) { Integer code = codeMap.get(key.toString().substring(0, 3)); return code==null?5:code; } }
2.若是不指定,默認使用HashPartitioner進行分區
3.修改JobSubmitter,指定自定義分區算法
public class JobSubmitter{ public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(JobSubmitter.class); job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReduce.class); /** * 設置參數map task在作數據分區時用那個分區邏輯類 * 若是不指定,會使用默認的HashPartitioner */ job.setPartitionerClass(ProvinceParttioner.class); /** * 因爲咱們的ProvincePartitioner可能會產生6種分區 * 因此須要6個map task來接收 */ job.setNumReduceTasks(6); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); FileInputFormat.setInputPaths(job,new Path("F:\\mrdata\\flow\\input")); FileOutputFormat.setOutputPath(job,new Path("F:\\mrdata\\flow\\province-output")); boolean res = job.waitForCompletion(true); System.exit(res ? 0:-1); } }
結果輸出
part-r-0000
13502468823 7335,110349,117684 13560436666 1116,954,2070 13560439658 2034,5892,7926
part-r-0001
13602846565 1938,2910,4848 13660577991 6960,690,7650
part-r-0002
13719199419 240,0,240 13726230503 2481,24681,27162 13726238888 2481,24681,27162 13760778710 120,120,240
part-r-0003
13826544101 264,0,264
part-r-0004
13922314466 3008,3720,6728 13925057413 11058,48243,59301 13926251106 240,0,240 13926435656 132,1512,1644
part-r-0005
13480253104 180,180,360 15013685858 3659,3538,7197 15920133257 3156,2936,6092 15989002119 1938,180,2118 18211575961 1527,2106,3633 18320173382 9531,2412,11943 84138413 4116,1432,5548