JavaShuo
欄目
標籤
Speed/accuracy trade-offs for modern convolutional object detectors
時間 2021-01-12
原文
原文鏈接
論文:https://arxiv.org/abs/1611.10012 1、Motivation 這篇文章通過大量的實驗,主要權衡了三種被稱爲「元結構」(meta-architectures)的主流,教我們如何選擇速度和精度滿足要求的檢測器。充分的對比了Faster RCNN、RFCN和SSD優缺點,並且實驗的設計非常系統。 2、作者做了哪些實驗 <1> 首先作者在TensorFlow裏復現了Fa
>>阅读原文<<
相關文章
1.
Speed/accuracy trade-offs for modern convolutional object detectors
2.
[論文筆記]Speed/accuracy trade-offs for modern convolutional object detectors
3.
【論文學習記錄】Speed/accuracy trade-offs for modern convolutional object detectors
4.
論文:Speed/accuracy trade-offs for object detectors
5.
one-stage object detectors(1)
6.
SiamFC:Fully-Convolutional Siamese Networks for Object Tracking
7.
Fully-Convolutional Siamese Networks for Object Tracking
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
9.
FCOS: Fully Convolutional One-Stage Object Detection
10.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
更多相關文章...
•
Scala for循環
-
Scala教程
•
Swift for 循環
-
Swift 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
使用Rxjava計算圓周率
相關標籤/搜索
convolutional
detectors
tradeoffs
modern
object...object
object
Modern PHP
modern-php
object%20object
4.object
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Window下Ribbit MQ安裝
2.
Linux下Redis安裝及集羣搭建
3.
shiny搭建網站填坑戰略
4.
Mysql8.0.22安裝與配置詳細教程
5.
Hadoop安裝及配置
6.
Python爬蟲初學筆記
7.
部署LVS-Keepalived高可用集羣
8.
keepalived+mysql高可用集羣
9.
jenkins 公鑰配置
10.
HA實用詳解
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Speed/accuracy trade-offs for modern convolutional object detectors
2.
[論文筆記]Speed/accuracy trade-offs for modern convolutional object detectors
3.
【論文學習記錄】Speed/accuracy trade-offs for modern convolutional object detectors
4.
論文:Speed/accuracy trade-offs for object detectors
5.
one-stage object detectors(1)
6.
SiamFC:Fully-Convolutional Siamese Networks for Object Tracking
7.
Fully-Convolutional Siamese Networks for Object Tracking
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
9.
FCOS: Fully Convolutional One-Stage Object Detection
10.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
>>更多相關文章<<