統計對象中某個成員變量的訪問次數
- mutable 是爲了突破 const 函數的限制而設計的
- mutable 成員變量將永遠處於可改變的狀態
- mutable 在實際的項目開發中被嚴謹濫用
mutable 的深刻分析ios
- mutable 成員變量破壞了只讀對象的內部狀態
- const 成員函數保證只讀對象的狀態不變性
- mutable 成員變量的出現沒法保證狀態不變性
mutable 的實現:面試
#include <iostream> #include <string> using namespace std; class Test { private: int m_value; mutable int m_count; // 注意這裏! public: Test(int value = 0) { m_value = value ; m_count = 0; } int getValue() const { m_count ++; return m_value; } void setValue(int value) { m_count ++; m_value = value; } int getCount() const { return m_count; } }; int main() { Test t; t.setValue(10); cout << "t.m_value = " << t.getValue() << endl; cout << "t.m_vount = " << t.getCount() << endl; const Test ct(200); cout << "ct.m_value = " << ct.getValue() << endl; cout << "ct.m_vount = " << ct.getCount() << endl; return 0; }
輸出: t.m_value = 10 t.m_vount = 2 ct.m_value = 200 ct.m_vount = 1
統計方式的改進:編程
#include <iostream> #include <string> using namespace std; class Test { private: int m_value; int * const m_pCount; // 注意這裏! public: Test(int value = 0) : m_pCount(new int(0)) { m_value = 0; } int getValue() const { *m_pCount = *m_pCount + 1; return m_value; } void setValue(int value) { *m_pCount = *m_pCount + 1; m_value = value; } int getCount() const { return *m_pCount; } }; int main() { Test t; t.setValue(10); cout << "t.m_value = " << t.getValue() << endl; cout << "t.m_vount = " << t.getCount() << endl; const Test ct(200); cout << "ct.m_value = " << ct.getValue() << endl; cout << "ct.m_vount = " << ct.getCount() << endl; return 0; }
輸出: t.m_value = 10 t.m_vount = 2 ct.m_value = 0 ct.m_vount = 1 分析: int * const m_pCount; ==> 定義指針常量 *m_pCount = *m_pCount + 1; ==> 修改指針常量指向的內存空間處的值 ==> 對象內部狀態沒有發生改變
new 關鍵字建立出來的對象位於什麼地方呢?
- new / delete 的本質是 C++ 預約義的
操做符
C++ 對這兩個操做符作了嚴格的行爲定義數組
new :函數
- 獲取足夠大的內存空間(默認爲堆空間)
- 在獲取的空間中調用構造函數建立對象
delete :spa
- 調用析構函數銷燬對象
- 歸還對象所佔用的空間(默認爲堆空間)
在 C++ 中可以重載 new / delete 操做符設計
- 全局重載(不推薦)
- 局部重載(針對具體類進行重載)
重載 new / delete 的意義在於改變更態對象建立時的內存分佈方式指針
- new / delete 的重載方式
默認爲靜態成員函數code
// static member function void* operator new(unsigned int size) { void* ret = NULL; /** ret point to allocated memory */ return ret; } // static member function void operator delete(void* p) { /** free the memory which is pointed by p */ }
#include <iostream> #include <string> using namespace std; class Test { private: static const unsigned int COUNT = 4; static unsigned char c_buffer[]; static unsigned char c_map[]; int m_value; public: void* operator new(unsigned int size) { void* ret = NULL; for(int i=0; i<COUNT; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "Succeed to allocate memory: " << ret << endl; break; } } return ret; } void operator delete (void* p) { if( p != NULL ) { unsigned char* mem = reinterpret_cast<unsigned char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < COUNT) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } } }; unsigned char Test::c_buffer[Test::COUNT] = {0}; unsigned char Test::c_map[Test::COUNT] = {0}; int main() { cout << "===== Test Single Object ====" << endl; Test* pt = new Test; delete pt; cout << "==== Test Object Array ====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test; cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; delete pa[i]; } return 0; }
輸出: ===== Test Single Object ==== Succeed to allocate memory: 0x804a0d4 succeed to free memory: 0x804a0d4 ==== Test Object Array ==== Succeed to allocate memory: 0x804a0d4 pa[0] = 0x804a0d4 Succeed to allocate memory: 0x804a0d8 pa[1] = 0x804a0d8 Succeed to allocate memory: 0x804a0dc pa[2] = 0x804a0dc Succeed to allocate memory: 0x804a0e0 pa[3] = 0x804a0e0 pa[4] = 0 delete 0x804a0d4 succeed to free memory: 0x804a0d4 delete 0x804a0d8 succeed to free memory: 0x804a0d8 delete 0x804a0dc succeed to free memory: 0x804a0dc delete 0x804a0e0 succeed to free memory: 0x804a0e0 delete 0
如何在指定的地址上建立C++對象?
解決方案對象
- 在類中重載 new / delete 操做符
- 在 new 的操做符重載函數中返回指定的地址
- 在 delete 操做符重載中標記對應的地址可用
#include <iostream> #include <string> #include <cstdlib> using namespace std; class Test { private: static unsigned int c_count; static unsigned char* c_buffer; static unsigned char* c_map; int m_value; public: static bool SetMemorySource(unsigned char* memory, unsigned int size) { bool ret = false; c_count = size / sizeof(Test); ret = (c_count && (c_map = reinterpret_cast<unsigned char*>(calloc(c_count, sizeof(unsigned char))))); if( ret ) { c_buffer = memory; } else { free(c_map); c_map = NULL; c_buffer = NULL; c_count = 0; } return ret; } void* operator new(unsigned int size) { void* ret = NULL; if( c_count > 0 ) { for(int i=0; i<c_count; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "Succeed to allocate memory: " << ret << endl; break; } } } else { ret = malloc(size); } return ret; } void operator delete (void* p) { if( p != NULL ) { if( c_count > 0 ) { unsigned char* mem = reinterpret_cast<unsigned char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < c_count) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } else { free(p); } } } }; unsigned int Test::c_count = NULL; unsigned char* Test::c_buffer = NULL; unsigned char* Test::c_map = NULL; int main() { unsigned char buffer[12] = {0}; Test::SetMemorySource(buffer, sizeof(buffer)); cout << "===== Test Single Object ====" << endl; Test* pt = new Test; delete pt; cout << "==== Test Object Array ====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test; cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; delete pa[i]; } return 0; }
輸出: ===== Test Single Object ==== Succeed to allocate memory: 0xbfbbacb0 succeed to free memory: 0xbfbbacb0 ==== Test Object Array ==== Succeed to allocate memory: 0xbfbbacb0 pa[0] = 0xbfbbacb0 Succeed to allocate memory: 0xbfbbacb4 pa[1] = 0xbfbbacb4 Succeed to allocate memory: 0xbfbbacb8 pa[2] = 0xbfbbacb8 pa[3] = 0 pa[4] = 0 delete 0xbfbbacb0 succeed to free memory: 0xbfbbacb0 delete 0xbfbbacb4 succeed to free memory: 0xbfbbacb4 delete 0xbfbbacb8 succeed to free memory: 0xbfbbacb8 delete 0 delete 0
new[] / delete[] 與 new / delete 徹底不一樣
- 動態對象數組建立經過 new[] 完成
- 動態對象數組的銷燬經過 delete[] 完成
- new[] / delete[] 可以被重載,進而改變內存管理方式
new[] / delete[] 的重載方式
默認爲靜態成員函數
// static member function void* operator new[] (unsigned int size) { return malloc(size); } // static member function void operator delete[] (void* p) { free(p); }
注意事項
new[] 實際須要返回的內存空間可能比指望的多
- 對象數組佔用的內存中須要保存數組信息(數組長度)
- 數組信息用於肯定構造函數和析構函數的調用次數
#include <iostream> #include <string> #include <cstdlib> using namespace std; class Test { private: int m_value; public: Test() { m_value = 0; } ~Test() { } void* operator new(unsigned int size) { cout << "operator new: " << size << endl; return malloc(size); } void operator delete (void* p) { cout << "operator delete: " << p << endl; free(p); } void* operator new[](unsigned int size) { cout << "operator new[]: " << size << endl; return malloc(size); } void operator delete[] (void* p) { cout << "operator delete[]: " << p << endl; free(p); } }; int main() { Test* pt = NULL; pt = new Test; delete pt; pt = new Test[5]; delete[] pt; return 0; }
輸出: operator new: 4 operator delete: 0x9e3c008 operator new[]: 24 ;注意這裏! operator delete[]: 0x9e3c018
- new / delete 的本質爲操做符
- 能夠經過全局函數重載 new / delete (不推薦)
- 能夠針對具體的類重載 new / delete
- new[] / delete[] 與 new / delete 徹底不一樣
- new[] / delete[] 也是能夠被重載的操做符
- new[] 返回的內存空間可能比指望的要多
以上內容參考狄泰軟件學院系列課程,請你們保護原創!