mutable是爲了突破const函數的限制而設計的,mutable修飾的成員變量將永遠處於可改變的狀態。mutable成員變量破壞了只讀對象的內部狀態,而const成員函數保證只讀對象的狀態不變性,所以mutable成員變量沒法保證只讀對象狀態的不變性。ios
#include <iostream> using namespace std; class Test { public: Test():m_count(0) { } void setValue(const int value) { m_count++; m_data = value; } int getValue() { m_count++; return m_data; } int getValue()const { m_count++; return m_data; } int getCount()const { return m_count; } private: int m_data; mutable int m_count; }; int main(int argc, char *argv[]) { Test test1; test1.setValue(100); cout << test1.getCount() << endl; const Test test2; test2.getValue(); cout << test2.getCount() << endl; return 0; }
上述代碼使用mutable修飾成員變量m_count,確保在const函數內部也能夠改變其值,但mutable破壞了只讀對象狀態的不變性,因此不推薦。數組
#include <iostream> using namespace std; class Test { public: Test():m_count(new int(0)) { } void setValue(const int value) { *m_count = *m_count + 1; m_data = value; } int getValue() { *m_count = *m_count + 1; return m_data; } int getValue()const { *m_count = *m_count + 1; return m_data; } int getCount()const { return *m_count; } private: int m_data; int* const m_count; }; int main(int argc, char *argv[]) { Test test1; test1.setValue(100); cout << test1.getCount() << endl; const Test test2; test2.getValue(); cout << test2.getCount() << endl; return 0; }
上述代碼使用指針常量統計訪問成員變量的次數,不會破壞只讀對象的狀態不變性。ide
new/delete的本質是C++預約義的操做符,C++語言規範對new/delete操做符作出了嚴格的規範:
A、new關鍵字用於獲取足夠的內存空間(默認爲堆空間),在獲取的空間中調用構造函數建立對象。
B、delete調用析構函數銷燬對象,歸還對象所佔用的空間(默認爲堆空間)。
C++語言中能夠重載new/delete操做符,重載new/delete操做符的意義在於改變更態對象建立時的內存分配方式,能夠將new建立的對象分配在棧空間、靜態存儲空間、指定地址空間。
new/delete操做符支持全局重載、局部重載,但不推薦對new/delete操做符進行全局重載,一般對new/delete操做符進行局部重載,如針對具體的類進行new/delete操做符重載。
new/delete操做符重載函數默認爲靜態函數,不管是否顯示聲明static關鍵字。函數
//static member function void* operator new(unsigned int size) { void* ret = NULL; /* ret point to allocated memory */ return ret; } //static member function void operator delete(void* p) { /* free the memory which is pointed by p */ }
#include <iostream> using namespace std; class Test { private: static const unsigned int COUNT = 4; static char c_buffer[]; static char c_map[]; int m_value; public: Test(int value = 0) { m_value = value; cout << "value : " << value << endl; } //static member function void* operator new (unsigned int size) { void* ret = NULL; for(int i = 0; i < COUNT; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "succeed to allocate memory: " << ret << endl; break; } } return ret; } //static member function void operator delete (void* p) { if( p != NULL ) { char* mem = reinterpret_cast<char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < COUNT) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } } int getValue()const { return m_value; } }; char Test::c_buffer[sizeof(Test) * Test::COUNT] = {0}; char Test::c_map[Test::COUNT] = {0}; int main(int argc, char *argv[]) { cout << "===== Test Single Object =====" << endl; Test* pt = new Test(1); delete pt; cout << "===== Test Object Array =====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test(100 + i); cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; if(pa[i] != NULL) { delete pa[i]; } } return 0; }
上述代碼,new會建立Test對象到靜態存儲空間中,從打印結果能夠知道new建立Test對象時先調用new操做符重載函數,在返回的空間中再調用Test構造函數。學習
在類中對new/delete操做符進行重載,在new操做符重載函數中返回指定的地址,在delete操做符重載函數中標記對應的地址可用。優化
#include <iostream> #include <string> #include <cstdlib> using namespace std; class Test { static unsigned int c_count; static char* c_buffer; static char* c_map; int m_value; public: static bool SetMemorySource(char* memory, unsigned int size) { bool ret = false; c_count = size / sizeof(Test); ret = (c_count && (c_map = reinterpret_cast<char*>(calloc(c_count, sizeof(char))))); if( ret ) { c_buffer = memory; } else { free(c_map); c_map = NULL; c_buffer = NULL; c_count = 0; } return ret; } void* operator new (unsigned int size) { void* ret = NULL; if( c_count > 0 ) { for(int i=0; i<c_count; i++) { if( !c_map[i] ) { c_map[i] = 1; ret = c_buffer + i * sizeof(Test); cout << "succeed to allocate memory: " << ret << endl; break; } } } else { ret = malloc(size); } return ret; } void operator delete (void* p) { if( p != NULL ) { if( c_count > 0 ) { char* mem = reinterpret_cast<char*>(p); int index = (mem - c_buffer) / sizeof(Test); int flag = (mem - c_buffer) % sizeof(Test); if( (flag == 0) && (0 <= index) && (index < c_count) ) { c_map[index] = 0; cout << "succeed to free memory: " << p << endl; } } else { free(p); } } } }; unsigned int Test::c_count = 0; char* Test::c_buffer = NULL; char* Test::c_map = NULL; int main(int argc, char *argv[]) { char buffer[12] = {0}; Test::SetMemorySource(buffer, sizeof(buffer)); cout << "===== Test Single Object =====" << endl; Test* pt = new Test; delete pt; cout << "===== Test Object Array =====" << endl; Test* pa[5] = {0}; for(int i=0; i<5; i++) { pa[i] = new Test; cout << "pa[" << i << "] = " << pa[i] << endl; } for(int i=0; i<5; i++) { cout << "delete " << pa[i] << endl; delete pa[i]; } return 0; }
上述代碼中,能夠在指定地址空間建立對象,也能夠不指定地址空間,此時在堆空間建立對象。this
#include <iostream> using namespace std; class Test { int m_value; public: Test(int value = 0) { m_value = value; cout << "value : " << m_value << endl; cout << "this : " << this << endl; } }; int main(int argc, char *argv[]) { Test test(100); //在棧空間建立對象 Test* pTest = new(&test) Test(1000); return 0; } 上述代碼中,可使用new操做符的默認實如今棧空間建立對象。
new[]/delete[]關鍵字與new/delete關鍵字徹底不一樣,是一組全新的關鍵字。
new[]關鍵字用於建立動態對象數組,delete[]關鍵字用於銷燬動態對象數組。new[]/delete[]關鍵字能夠進行重載,用於優化內存管理方式。new[]關鍵字返回的空間大小一般大於預期的動態數組空間大小。spa
#include <iostream> #include <string> #include <cstdlib> using namespace std; class Test { int m_value; public: Test(int value = 0) { m_value = value; } ~Test() { } void* operator new (unsigned int size) { cout << "operator new: " << size << endl; return malloc(size); } void operator delete (void* p) { cout << "operator delete: " << p << endl; free(p); } void* operator new[] (unsigned int size) { cout << "operator new[]: " << size << endl; return malloc(size); } void operator delete[] (void* p) { cout << "operator delete[]: " << p << endl; free(p); } }; int main(int argc, char *argv[]) { Test* pt = NULL; pt = new Test; delete pt; pt = new Test[5]; delete[] pt; return 0; }
上述代碼中,重載了new[]/delete[]關鍵字。設計