vim /etc/selinux/config SELINUX=disabled
yum -y install chrony
修改時間服務器配置, 並重啓java
vim /etc/chrony.conf [root@dock hadoop]# cat /etc/chrony.conf | grep -v ^$ | grep -v ^# server 0.centos.pool.ntp.org iburst server 1.centos.pool.ntp.org iburst server 2.centos.pool.ntp.org iburst server 3.centos.pool.ntp.org iburst driftfile /var/lib/chrony/drift makestep 1.0 3 rtcsync allow 192.168.199.0/16 local stratum 10 logdir /var/log/chrony
修改須要同步的服務器配置, 並重啓node
vim /etc/chrony.conf [root@node1 ~]# cat /etc/chrony.conf | grep -v ^$ | grep -v ^# server 192.168.199.131 iburst driftfile /var/lib/chrony/drift makestep 1.0 3 rtcsync logdir /var/log/chrony
執行時間同步linux
systemctl restart chronyd [root@node2 ~]# chronyc sources -v 210 Number of sources = 1 .-- Source mode '^' = server, '=' = peer, '#' = local clock. / .- Source state '*' = current synced, '+' = combined , '-' = not combined, | / '?' = unreachable, 'x' = time may be in error, '~' = time too variable. || .- xxxx [ yyyy ] +/- zzzz || Reachability register (octal) -. | xxxx = adjusted offset, || Log2(Polling interval) --. | | yyyy = measured offset, || \ | | zzzz = estimated error. || | | \ MS Name/IP address Stratum Poll Reach LastRx Last sample =============================================================================== ^* dock 3 6 177 4 -1590ns[ +62us] +/- 13ms
查看時間同步: apache
[root@node3 ~]# timedatectl Local time: Wed 2018-03-21 08:16:02 EDT Universal time: Wed 2018-03-21 12:16:02 UTC RTC time: Wed 2018-03-21 12:16:02 Time zone: America/New_York (EDT, -0400) NTP enabled: yes NTP synchronized: yes RTC in local TZ: no DST active: yes Last DST change: DST began at Sun 2018-03-11 01:59:59 EST Sun 2018-03-11 03:00:00 EDT Next DST change: DST ends (the clock jumps one hour backwards) at Sun 2018-11-04 01:59:59 EDT Sun 2018-11-04 01:00:00 EST
hostname node1, hostname node2 hostname node3
java -version 1.8.0_161編程
ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
發送到namenode, 設置bootstrap
非root用戶, 記得修改authorized 權限爲。600vim
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
參照其餘博客..centos
zkFc-用來作HA的備份和切換的, 作active, standby的狀態管理的, 監控namenode進程, 記錄信息到zookeeper中服務器
journalNode--複製fsimage和edtis的框架
export HADOOP_HOME=/usr/local/hadoop-2.7.5 export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
cd {HADOOP_HOME}/etc/hadoop export JAVA_HOME=/usr/local/jdk/jdk1.8.0_161
<configuration> <property>
<--! 指定hdfs的nameservice --> <name>fs.defaultFS</name> <value>hdfs://hdfscluster</value> </property> <property>
<!-- 指定hadoop臨時目錄 --> <name>hadoop.tmp.dir</name> <value>/usr/local/hadoop-2.8.4/tmp</value> </property> <property>
<!-- 指定zookeeper地址 --> <name>ha.zookeeper.quorum</name> <value>node1:2181,node2:2181,node3:2181</value> </property> </configuration>
<configuration> <!--指定hdfs的nameservice爲ns1,須要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>hdfscluster</value> </property> <!-- ns1下面有兩個NameNode,分別是nn1,nn2 --> <property> <name>dfs.ha.namenodes.hdfscluster</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通訊地址 --> <property> <name>dfs.namenode.rpc-address.hdfscluster.nn1</name> <value>192.168.199.182:8020</value> </property> <!-- nn1的http通訊地址 --> <property> <name>dfs.namenode.http-address.hdfscluster.nn1</name> <value>192.168.199.182:50070</value> </property> <!-- nn2的RPC通訊地址 --> <property> <name>dfs.namenode.rpc-address.hdfscluster.nn2</name> <value>192.168.199.247:8020</value> </property> <!-- nn2的http通訊地址 --> <property> <name>dfs.namenode.http-address.hdfscluster.nn2</name> <value>192.168.199.247:50070</value> </property> <!-- 指定NameNode的元數據在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://node1:8485;node2:8485;node3:8485/hdfscluster</value> </property> <!-- 指定JournalNode在本地磁盤存放數據的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/usr/local/hadoop-2.8.4/journaldata</value> </property> <!-- 開啓NameNode失敗自動切換 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失敗自動切換實現方式 --> <property> <name>dfs.client.failover.proxy.provider.hdfscluster</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 配置隔離機制方法,多個機制用換行分割,即每一個機制暫用一行-->
<property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property>
<!-- 使用sshfence隔離機制時須要ssh免登錄 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/root/.ssh/id_dsa</value> </property> <!-- 配置sshfence隔離機制超時時間 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property> </configuration>
vim slaves node1 node2 node3
<configuration> <!-- 指定mr框架爲yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration>
<configuration> <!-- Site specific YARN configuration properties --> <!-- 開啓RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yarncluster</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分別指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>node1</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>node2</value> </property> <!-- 指定zk集羣地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>node1:2181,node2:2181,node3:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>
hadoop-daemon.sh start journalnode
hdfs namenode -format hadoop-daemon.sh start namenode
3), 在另外一個namenode上拷貝, 或者手動拷貝
hdfs namenode -bootstrapStandby
hadoop-daemon.sh start namenode
hdfs zkfc -formatZK
start-dfs.sh
此時可經過 node1:50070 訪問 hadoop
1), 在nameNode上執行
start-yarn.sh
2), 啓動 resourcenamenager
yarn-HA, 不須要記錄狀態, 因此很是簡單
yarn-daemon.sh start resourcemanager
之後啓動時, 先啓動3臺zookeeper, 而後 start-dfs.sh 便可以了
hadoop fs -mkdir -p /data/wordcount hadoop fs -mkdir -p /output
2, 上傳文件
hadoop fs -put README.txt /data/wordcount
3, 執行樣例
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /data/wordcount /output/wordcount
4, 查看分片文件
hadoop fs -text /output/wordcount/part-r-00000
HA編程的時候應該注意:
1, 代碼訪問hdfs的時候,
FileSystem.get(new URI("hfs://hdfscluster/", conf), conf, "root);
須要將配置文件
hdfs-site.xml, core-site.xml, yarn-site.xml, mapred-site.xml 放在resources下,
在 new Configuration() 的時候, 會自動加載resources中的配置文件