Bzojphp
對於每一個節點,咱們能夠用樹鏈剖分和線段樹維護如下信息:ui
#include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using std::sort; using std::swap; typedef long long ll; template<typename T> void read(T &x) { int flag = 1; x = 0; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); } while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag; } const int N = 20010, M = 51, T = 65600; int n, m, q, X = 1 << 16, Y = ~0U >> 1, A, B, Q, op, x, y; int fa[N], son[N], siz[N], top[N], dfn[N], dep[N], val[N], tim; int cnt, from[N], to[N], nxt[N]; inline void addEdge(int u, int v) { to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt; } struct P { ll v[M]; P() { for(int i = 0; i < M; ++i) v[i] = 0; } P operator + (P b) { P c; for(int i = 0; i < M; ++i) c.v[i] = max(v[i], b.v[i]); return c; } P operator * (P b) { P c; for(int i = 0; i < M; ++i) for(int j = 0; j < M - i; ++j) c.v[i + j] = max(c.v[i + j], v[i] + b.v[j]); return c; } }tmp, a[N], v0[T], v1[T], s0, s1; //讀入數據 inline int getint() { A = ((A ^ B) + B / X + B * X) & Y; B = ((A ^ B) + A / X + A * X) & Y; return (A ^ B) % Q; } inline void gettmp() { for(int i = 1; i <= m; ++i) tmp.v[i] = getint(); sort(&tmp.v[1], &tmp.v[m + 1]); } //線段樹 inline void pushup(int o, int lc, int rc) { v0[o] = v0[lc] + v0[rc], v1[o] = v1[lc] * v1[rc]; } void build(int o = 1, int l = 1, int r = n) { if(l == r) { v0[o] = v1[o] = a[val[l]]; return ; } int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1; build(lc, l, mid), build(rc, mid + 1, r), pushup(o, lc, rc); } void modify(int k, int o = 1, int l = 1, int r = n) { if(l == r) { v0[o] = v1[o] = tmp; return ; } int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1; if(k <= mid) modify(k, lc, l, mid); else modify(k, rc, mid + 1, r); pushup(o, lc, rc); } void query0(int ql, int qr, int o = 1, int l = 1, int r = n) { if(l >= ql && r <= qr) { s0 = s0 + v0[o]; return ; } int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1; if(ql <= mid) query0(ql, qr, lc, l, mid); if(qr > mid) query0(ql, qr, rc, mid + 1, r); } void query1(int ql, int qr, int o = 1, int l = 1, int r = n) { if(l >= ql && r <= qr) { s1 = s1 * v1[o]; return ; } int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1; if(ql <= mid) query1(ql, qr, lc, l, mid); if(qr > mid) query1(ql, qr, rc, mid + 1, r); } //樹鏈剖分 void dfs(int u) { siz[u] = 1, dep[u] = dep[fa[u]] + 1; for(int i = from[u]; i; i = nxt[i]) { int v = to[i]; dfs(v), siz[u] += siz[v]; if(siz[v] > siz[son[u]]) son[u] = v; } } void dfs(int u, int t) { dfn[u] = ++tim, val[tim] = u, top[u] = t; if(!son[u]) return ; dfs(son[u], t); for(int i = from[u]; i; i = nxt[i]) if(to[i] != son[u]) dfs(to[i], to[i]); } inline void Path(int x, int y) { //dep[y] 始終小於等於 dep[x] if(x == y) return ; x = fa[x]; int fx = top[x]; while(fx != top[y]) query0(dfn[fx], dfn[x]), x = fa[fx], fx = top[x]; query0(dfn[y], dfn[x]); } int main () { #ifdef OFFLINE_JUDGE freopen("233.in", "r", stdin); freopen("233.out", "w", stdout); #endif read(n), read(m), read(A), read(B), read(Q); for(int i = 2; i <= n; ++i) read(fa[i]), addEdge(fa[i], i); for(int i = 1; i <= n; ++i) gettmp(), a[i] = tmp; dfs(1), dfs(1, 1), build(), read(q); while(q--) { read(op), read(x); if(!op) gettmp(), modify(dfn[x]); else { read(y); s0 = s1 = P(); Path(x, y), query1(dfn[x], dfn[x] + siz[x] - 1); s0 = s0 * s1; printf("%lld\n", s0.v[m]); } } return 0; }