JavaShuo
欄目
標籤
線性代數學習筆記三:矩陣的秩
時間 2020-12-25
欄目
應用數學
简体版
原文
原文鏈接
Q:有n個方程就能解出n個未知數麼? A:不一定,如要有唯一解,則他們必須線性無關。否則這個方程組有無窮多個解。 線性無關:在一個線性空間*中,如果一組向量a1,a2...as(其中s>=1),只有當k1=k2=...=ks=0是,k1a1+k2a2+…ksas=0才成立,則稱這組向量線性無關。如若存在一組不全爲零的係數使該等式結果爲零,則這組向量線性相關。 可以理解爲,方程組中的向量不能
>>阅读原文<<
相關文章
1.
線性代數學習筆記——矩陣
2.
線性代數學習筆記——克拉默法則及矩陣的秩——4. 矩陣秩的計算
3.
線性代數學習筆記——第二十一講——矩陣秩的等式
4.
線性代數學習筆記——第二十講——矩陣秩的定義
5.
線性代數學習筆記——第二十二講——矩陣秩的不等式
6.
機器學習學習筆記 3、線性代數與矩陣
7.
線性代數學習筆記——第四十八講——矩陣的列秩和行秩
8.
線性代數學習筆記——第六講——矩陣的轉置
9.
線性代數學習筆記——習題課——實對稱矩陣
10.
線性代數筆記-線性空間和矩陣複習
更多相關文章...
•
R 矩陣
-
R 語言教程
•
PHP imageaffinematrixget - 獲取矩陣
-
PHP參考手冊
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
適用於PHP初學者的學習線路和建議
相關標籤/搜索
線性代數
矩陣
數學:線性代數
學習筆記
陣線
我的筆記三
opencv學習筆記三
PySpark學習筆記三
Spring學習筆記三
應用數學
PHP 7 新特性
SQLite教程
Redis教程
學習路線
初學者
代碼格式化
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
python的安裝和Hello,World編寫
2.
重磅解讀:K8s Cluster Autoscaler模塊及對應華爲雲插件Deep Dive
3.
鴻蒙學習筆記2(永不斷更)
4.
static關鍵字 和構造代碼塊
5.
JVM筆記
6.
無法啓動 C/C++ 語言服務器。IntelliSense 功能將被禁用。錯誤: Missing binary at c:\Users\MSI-NB\.vscode\extensions\ms-vsc
7.
【Hive】Hive返回碼狀態含義
8.
Java樹形結構遞歸(以時間換空間)和非遞歸(以空間換時間)
9.
數據預處理---缺失值
10.
都要2021年了,現代C++有什麼值得我們學習的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
線性代數學習筆記——矩陣
2.
線性代數學習筆記——克拉默法則及矩陣的秩——4. 矩陣秩的計算
3.
線性代數學習筆記——第二十一講——矩陣秩的等式
4.
線性代數學習筆記——第二十講——矩陣秩的定義
5.
線性代數學習筆記——第二十二講——矩陣秩的不等式
6.
機器學習學習筆記 3、線性代數與矩陣
7.
線性代數學習筆記——第四十八講——矩陣的列秩和行秩
8.
線性代數學習筆記——第六講——矩陣的轉置
9.
線性代數學習筆記——習題課——實對稱矩陣
10.
線性代數筆記-線性空間和矩陣複習
>>更多相關文章<<