上篇文章講了KVO本質和KVC的聯繫,想必你們都已經清楚了,今天咱們再看一下Category
的底層原理。 先看一下Category
的簡單使用,首先新增一個類的Category
,而後添加須要的函數,而後在使用的文件中導入就能夠直接使用了。代碼以下:git
@interface FYPerson : NSObject
- (void)run;
@end
@implementation FYPerson
-(void)run{
NSLog(@"run is run");
}
@end
//類別
@interface FYPerson (test)
- (void)test;
@end
@implementation FYPerson (test)
- (void)test{
NSLog(@"test is run");
}
@end
//使用
#import "FYPerson.h"
#import "FYPerson+test.h"
FYPerson *person=[[FYPerson alloc]init];
[person test];
[person run];
複製代碼
類別使用就是這麼簡單。 那麼類別的本質是什麼呢?類的方法是存儲在什麼地方呢? 第一篇類的本質已經講過了,運行時中,類對象是有一份,方法都存儲在類對象結構體fy_objc_class
中的class_data_bits_t->data()->method_list_t
中的,那麼類別方法也是存儲在method_list_t
和取元類對象的method_list_t
中的。編譯的時候類別編譯成結構體_category_t
,而後runtime
在運行時動態將方法添加到method_list_t
中。運行xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc FYPerson+test.m -o FYPerson+test.cpp
進入到FYPerson+test.cpp
內部查看編譯以後的代碼github
struct _category_t {
const char *name; //"FYPerson"
struct _class_t *cls;
const struct _method_list_t *instance_methods;
const struct _method_list_t *class_methods;
const struct _protocol_list_t *protocols;
const struct _prop_list_t *properties;
};
//存儲 test方法
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_FYPerson_$_test __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"test", "v16@0:8", (void *)_I_FYPerson_test_test}}
};
extern "C" __declspec(dllimport) struct _class_t OBJC_CLASS_$_FYPerson;
//_category_t 存儲FYPerson的分類的數據
static struct _category_t _OBJC_$_CATEGORY_FYPerson_$_test __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"FYPerson",
0, // &OBJC_CLASS_$_FYPerson,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_FYPerson_$_test,//instace方法
0,//類方法
0,//協議方法
0,//屬性
};
複製代碼
存儲在_category_t
中的數據是什麼時間加載到FYPerson
的class_data_bits_t.data
呢?咱們探究一下,打開源碼下載打開工程閱讀源碼找到objc-os.mm
,經過查找函數運行順序獲得_objec_init->map_images->map_images_noljock->_read_images->remethodizeClass(cls)->attachCategories(cls, cats, true /*flush caches*/)
,最終進入到attachCategories
關鍵函數內部:bootstrap
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
if (!cats) return;
if (PrintReplacedMethods) printReplacements(cls, cats);
bool isMeta = cls->isMetaClass();
// fixme rearrange to remove these intermediate allocations
//方法數組[[1,2,3],[4,5,6],[7,8,9]]
method_list_t **mlists = (method_list_t **)
malloc(cats->count * sizeof(*mlists));
//屬性數組
property_list_t **proplists = (property_list_t **)
malloc(cats->count * sizeof(*proplists));
//協議數組
protocol_list_t **protolists = (protocol_list_t **)
malloc(cats->count * sizeof(*protolists));
// Count backwards through cats to get newest categories first
int mcount = 0;
int propcount = 0;
int protocount = 0;
int i = cats->count;
bool fromBundle = NO;
//最後的編譯文件放到最前邊
while (i--) {
//取出某個分類
auto& entry = cats->list[i];
//取出分類 的 instance方法或者class方法
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
mlists[mcount++] = mlist; //mlists 接受全部分類方法
fromBundle |= entry.hi->isBundle();
}
//proplist 接受全部分類屬性
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
proplists[propcount++] = proplist;
}
//proplist 接受全部協議方法
protocol_list_t *protolist = entry.cat->protocols;
if (protolist) {
protolists[protocount++] = protolist;
}
}
//收集了全部協議 分類方法
auto rw = cls->data();
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
//追加全部分類方法
rw->methods.attachLists(mlists, mcount);
//釋放數組
free(mlists);
//刷新該類的緩存
if (flush_caches && mcount > 0) flushCaches(cls);
//追加全部分類屬性
rw->properties.attachLists(proplists, propcount);
free(proplists);//釋放數組
//追加全部分類協議
rw->protocols.attachLists(protolists, protocount);
free(protolists);//釋放數組
}
複製代碼
attachCategories
是將全部的分類方法和協議,屬性倒序添加到類中,具體添加的優先級是怎麼操做的?進入到rw->protocols.attachLists
內部:數組
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
//一共須要的數量
uint32_t newCount = oldCount + addedCount;
//分配內存 內存不夠用了,須要擴容
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
//賦值count
array()->count = newCount;
// array()->lists:原來的方法列表向後移動 oldCount * sizeof(array()->lists[0]個長度
memmove(array()->lists + addedCount/*指針移動到數組末尾*/, array()->lists/*數組*/,
oldCount * sizeof(array()->lists[0])/*移動數據的大小*/);
//空出來的 內存使用addedLists拷貝過去 大小是:addedCount * sizeof(array()->lists[0])
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
/*
圖示講解:
array()->lists:A->B->C->D->E
addedCount:3
addedLists:P->L->V
memmove以後:nil->nil->nil->A->B->C->D->E
而後再講addedLists插入到數組前邊,最終array()->lists的值是:
P->L->V->A->B->C->D->E
*/
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
複製代碼
能夠看出來:緩存
runtime
加載某個類的全部Category數據具體的編譯順序是project文件中->Build Phases->Complile Sources的順序。bash
每一個類和分類都會加載的時候調用+load
方法,具體是怎麼調用呢?咱們查看源碼_objc_init->load_images->call_load_methods
數據結構
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more //執行class+load直到完成 while (loadable_classes_used > 0) { call_class_loads(); } //執行Category +load 一次 // 2. Call category +loads ONCE more_categories = call_category_loads(); // 3. Run more +loads if there are classes OR more untried categories } while (loadable_classes_used > 0 || more_categories); objc_autoreleasePoolPop(pool); loading = NO; } 複製代碼
類+load
在Category+load
前邊執行,當類的+load
執行完畢而後再去執行Category+load
,並且只有一次。 當class有子類的時候加載順序呢?其實全部類都是基於NSObject
,那麼咱們假設按照編譯順序加載Class+load
,就有一個問題是父類+load執行的操做豈不是在子類執行的時候尚未執行嗎?這個假設明顯不對,基類+load
中的操做是第一個執行的,其餘子類是按照superclass->class->sonclass
的順序執行的。 查看源碼_objc_init->load_images->prepare_load_methods((const headerType *)mh)->schedule_class_load
在objc-runtime-new.mm
2856行app
/***********************************************************************
* Schedule +load for classes in this image, any un-+load-ed
* superclasses in other images, and any categories in this image.
**********************************************************************/
// Recursively schedule +load for cls and any un-+load-ed superclasses.
// cls must already be connected.
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
//遞歸調用本身直到調用clas->self
schedule_class_load(cls->superclass);
//添加class
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
複製代碼
能夠了解到該函數遞歸調用本身,直到+load
方法已經調用過爲止,因此無論編譯順序是高低,+load
的加載順序始終是NSObject->FYPrson->FYStudent
。多個類平行關係的話,按照編譯順序加載。 下邊是稍微複雜點的類關係:iphone
NSObject
Person
Student
NSObjet
Car
BigCar
BigOrSmallCar
複製代碼
編譯順序是ide
Person
Student
Car
BigOrSmallCar
複製代碼
那麼他們+load
的加載順序是:
NSobject->Person->Student->Car->BigCar->BigOrSmallCar
複製代碼
看着不是很明白的 能夠再看一下剛纔的schedule_class_load
函數。 加載成功以後,是按照objc_msgsend()
流程發送的嗎?咱們進入到call_class_loads
內部
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
複製代碼
能夠找到(*load_method)(cls, SEL_load);
該函數,該函數是直接使用IMP
執行的,IMP
就是函數地址,能夠直接訪問函數而不用消息的轉發流程。
objc
源碼解讀過程objc-msg-arm64.x->objc_msgSend->objc->runtime-new->class_getinstanceMethod->lookUpImpOrNil->lookUpImpOrForward->_clas_initialize->callInitialize->objc_msgSend(cls,SEL_Initialize)
在runtime-new.h
4819行
Method class_getInstanceMethod(Class cls, SEL sel)
{
if (!cls || !sel) return nil;
// This deliberately avoids +initialize because it historically did so.
// This implementation is a bit weird because it's the only place that // wants a Method instead of an IMP. #warning fixme build and search caches // Search method lists, try method resolver, etc. lookUpImpOrNil(cls, sel, nil, NO/*initialize*/, NO/*cache*/, YES/*resolver*/); #warning fixme build and search caches return _class_getMethod(cls, sel); } 複製代碼
根據lookUpImpOrNil
查看4916行
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
checkIsKnownClass(cls);
if (!cls->isRealized()) {
realizeClass(cls);
}
if (initialize && !cls->isInitialized()) {
runtimeLock.unlock();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.lock();
//當第一次收到消息,cls沒有初始化,則調用_class_initialize進行初始化
}
retry:
runtimeLock.assertLocked();
// Try this class's cache. imp = cache_getImp(cls, sel); if (imp) goto done; // Try this class's method lists.
//在本類中查找method
{
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
}
// Try superclass caches and method lists.
{
unsigned attempts = unreasonableClassCount();
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method // resolver for this class first. break; } } // Superclass method list. Method meth = getMethodNoSuper_nolock(curClass, sel); if (meth) { log_and_fill_cache(cls, meth->imp, sel, inst, curClass); imp = meth->imp; goto done; } } } // No implementation found. Try method resolver once. if (resolver && !triedResolver) { runtimeLock.unlock(); _class_resolveMethod(cls, sel, inst); runtimeLock.lock(); // Don't cache the result; we don't hold the lock so it may have // changed already. Re-do the search from scratch instead. triedResolver = YES; goto retry; } // No implementation found, and method resolver didn't help.
// Use forwarding.
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlock();
return imp;
}
複製代碼
當第一次收到消息,cls沒有初始化,則調用_class_initialize
進行初始化 咱們進入到_class_initialize
內部objc-initialize.mm
484行
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
//遞歸調用父類是否有初始化和是否有父類
supercls = cls->superclass;
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it. _setThisThreadIsInitializingClass(cls); if (MultithreadedForkChild) { // LOL JK we don't really call +initialize methods after fork().
performForkChildInitialize(cls, supercls);
return;
}
// Send the +initialize message.
// Note that +initialize is sent to the superclass (again) if
// this class doesn't implement +initialize. 2157218 if (PrintInitializing) { _objc_inform("INITIALIZE: thread %p: calling +[%s initialize]", pthread_self(), cls->nameForLogging()); } // Exceptions: A +initialize call that throws an exception // is deemed to be a complete and successful +initialize. // // Only __OBJC2__ adds these handlers. !__OBJC2__ has a // bootstrapping problem of this versus CF's call to
// objc_exception_set_functions().
#if __OBJC2__
@try
#endif
{
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
}
#if __OBJC2__
@catch (...) {
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: +[%s initialize] "
"threw an exception",
pthread_self(), cls->nameForLogging());
}
@throw;
}
@finally
#endif
{
// Done initializing.
lockAndFinishInitializing(cls, supercls);
}
return;
}
else if (cls->isInitializing()) {
// We couldn't set INITIALIZING because INITIALIZING was already set. // If this thread set it earlier, continue normally. // If some other thread set it, block until initialize is done. // It's ok if INITIALIZING changes to INITIALIZED while we're here, // because we safely check for INITIALIZED inside the lock // before blocking. if (_thisThreadIsInitializingClass(cls)) { return; } else if (!MultithreadedForkChild) { waitForInitializeToComplete(cls); return; } else { // We're on the child side of fork(), facing a class that
// was initializing by some other thread when fork() was called.
_setThisThreadIsInitializingClass(cls);
performForkChildInitialize(cls, supercls);
}
}
else if (cls->isInitialized()) {
// Set CLS_INITIALIZING failed because someone else already
// initialized the class. Continue normally.
// NOTE this check must come AFTER the ISINITIALIZING case.
// Otherwise: Another thread is initializing this class. ISINITIALIZED
// is false. Skip this clause. Then the other thread finishes
// initialization and sets INITIALIZING=no and INITIALIZED=yes.
// Skip the ISINITIALIZING clause. Die horribly.
return;
}
else {
// We shouldn't be here. _objc_fatal("thread-safe class init in objc runtime is buggy!"); } } 複製代碼
能夠看出來,和+load
方法同樣,先父類後子類。而後賦值reallyInitialize = YES;
,後邊使用try
主動調用callInitialize(cls);
,來到callInitialize(cls);
內部:
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
複製代碼
能夠看到最終仍是使用((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize)
主動調用了該函數。
+initialize和+load的很大區別是,+initialize是經過objc_msgSend進行調用的,因此有如下特色 若是子類沒有實現+initialize,會調用父類的+initialize(因此父類的+initialize可能會被調用屢次) 若是分類實現了+initialize,就覆蓋類自己的+initialize調用
用僞代碼實現如下思路:
if(class 沒有初始化){
父類初始化
子類初始化
調用initialize
}
若是子類沒有實現initialize,則去調用父類initialize。
複製代碼
至於子類沒有實現的話是直接調用父類的initialize
,是使用objc-msgsend
的緣由。
@interface FYPerson : NSObject
@end
+(void)initialize{
printf("\n%s",__func__);
}
+(void)load{
printf("\n%s",__func__);
}
@interface FYPerson (test1)
@end
+(void)initialize{
printf("\n%s",__func__);
}
+(void)load{
printf("\n%s",__func__);
}
//輸出
+[FYPerson load]
+[FYPerson(test2) load]
+[FYPerson(test1) load]
複製代碼
+load
是根據函數地址直接調用,initialize
是經過objc_msgSend
調用+load
是runtime加載類、分類時候調用(只會調用一次)initialize
是第一次接受消息的時候調用,每一個類只會調用一次(子類沒實現,父類可能被調用屢次)+load
調用優先於initialize
,子類調用+load
以前會調用父類的+load
,再調用分類的+load
,分類之間先編譯,先調用。initialize
先初始化父類,再初始化子類(可能最終調用父類的initialize
)繼承NSObject
是能夠能夠直接使用@property (nonatomic,assign) int age;
,可是在Category
中會報錯,那麼怎麼實現和繼承基類同樣的效果呢? 咱們查看Category
結構體
struct _category_t {
const char *name; //"FYPerson"
struct _class_t *cls;
const struct _method_list_t *instance_methods;
const struct _method_list_t *class_methods;
const struct _protocol_list_t *protocols;
const struct _prop_list_t *properties;
};
複製代碼
其中const struct _prop_list_t *properties;
是存儲屬性的,可是缺乏成員變量,而咱們也不能主動在_category_t
插入ivar
,那麼咱們可使用objc_setAssociatedObject
將屬性的值存儲全局的AssociationsHashMap
中,使用的時候objc_getAssociatedObject(id object, const void *key)
,不使用的時候刪除使用objc_removeAssociatedObjects
刪除。
咱們進入到objc_setAssociatedObject
內部,objc-references.mm
275行
void _object_set_associative_reference(id object, void *key, id value, uintptr_t policy) {
// retain the new value (if any) outside the lock.
ObjcAssociation old_association(0, nil);
//根據key value 處理
id new_value = value ? acquireValue(value, policy) : nil;
{
AssociationsManager manager;
//生成一個全局的 HashMap
AssociationsHashMap &associations(manager.associations());
disguised_ptr_t disguised_object = DISGUISE(object);
//有value 就處理
if (new_value) {
// break any existing association.
// 遍歷 hashMap是否有該obj
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
// secondary table exists
//有的話 更新其 value
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
old_association = j->second;
j->second = ObjcAssociation(policy, new_value);
} else {
(*refs)[key] = ObjcAssociation(policy, new_value);
}
} else {
// create the new association (first time).
//沒有的話 賦值給 refs
ObjectAssociationMap *refs = new ObjectAssociationMap;
associations[disguised_object] = refs;
(*refs)[key] = ObjcAssociation(policy, new_value);
object->setHasAssociatedObjects();
}
} else {
// setting the association to nil breaks the association.
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
old_association = j->second;
//刪除refs
refs->erase(j);
}
}
}
}
// release the old value (outside of the lock).
if (old_association.hasValue()) ReleaseValue()(old_association);
}
複製代碼
經過該函數咱們瞭解到
AssociationsManager
管理的AssociationsHashMap
中AssociationsManager
實際上是管理了已key爲id object
對應的AssociationsHashMap
,AssociationsHashMap
存儲了key
對應的ObjcAssociation
,ObjcAssociation
是存儲了value
和policy
,ObjcAssociation
的數據結構以下:class ObjcAssociation {
uintptr_t _policy;
id _value;
*****
}
複製代碼
具體抽象關係見下圖
AssociationsManager --> AssociationsHashMap --> ObjectAssociationMap
-->void * ObjectAssociation -->uintprt_t _policy ,id _value;
複製代碼
簡單來說就是一個全局變量保存了以class
爲key
對應的AssociationsHashMap
,這個AssociationsHashMap
存儲了一個key
對應的ObjectAssociation
,ObjectAssociation
包含了value
和_policy
。經過2層map保存了數據。
objc_setAssociatedObject | obj,key,value,policy |
---|---|
objc_getAssociatedObject | 根據 obj 和 key獲取值 |
void objc_removeAssociatedObjects(id object) | 根據obj 刪除關聯函數 |
objc_AssociationPolicy
的類型:
OBJC_ASSOCIATION_ASSIGN | weak 引用 |
---|---|
OBJC_ASSOCIATION_RETAIN_NONATOMIC | 非原子強引用 |
OBJC_ASSOCIATION_COPY_NONATOMIC | 非原子至關於copy |
OBJC_ASSOCIATION_RETAIN | 強引用 |
OBJC_ASSOCIATION_COPY | 原子操做,至關於copy |
@interface NSObject (test)
@property (nonatomic,assign) NSString * name;
@end
#import "NSObject+test.h"
#import "objc/runtime.h"
@implementation NSObject (test)
-(void)setName:(NSString *)name{
objc_setAssociatedObject(self, @selector(name), name, OBJC_ASSOCIATION_COPY);
}
- (NSString *)name{
return objc_getAssociatedObject(self, @selector(name));
}
@end
NSObject *obj =[[NSObject alloc]init];
obj.name = @"老弟來了";
printf("%s",obj.name.UTF8String);
//老弟來了
複製代碼
這段代碼咱們實現了給基類添加一個成員變量name
,而後又成功取出了值,標示咱們作新增的保存成員變量的值是對的。
+load
在冷啓動時候執行,執行順序和編譯順序成弱相關,先父類,後子類,並且每一個類執行一次,執行是直接調用函數地址。+initialize
在第一次接受消息執行,先父類,後子類,子類沒實現,會調用父類,利用objc-msgsend
機制調用。Associative
添加和讀取屬性的值本文章之因此圖片比較少,我以爲仍是跟着代碼敲一遍,印象比較深入。
最怕一輩子碌碌無爲,還安慰本身平凡難得。
廣告時間