IO多路複用html
概念說明linux
在進行解釋以前,首先要說明幾個概念:web
如今操做系統都是採用虛擬存儲器,那麼對32位操做系統而言,它的尋址空間(虛擬存儲空間)爲4G(2的32次方)。
操做系統的核心是內核,獨立於普通的應用程序,能夠訪問受保護的內存空間,也有訪問底層硬件設備的全部權限。
爲了保證用戶進程不能直接操做內核(kernel),保證內核的安全,操心繫統將虛擬空間劃分爲兩部分,一部分爲內核空間,一部分爲用戶空間。
針對linux操做系統而言,將最高的1G字節(從虛擬地址0xC0000000到0xFFFFFFFF),供內核使用,稱爲內核空間,而將較低的3G字節(從虛擬地址0x00000000到0xBFFFFFFF),供各個進程使用,稱爲用戶空間。 數組
從一個進程的運行轉到另外一個進程上運行,這個過程當中通過下面這些變化:緩存
保存處理機上下文,包括程序計數器(用於存放下一條指令所在單元的地址的地方)和其餘寄存器。安全
更新PCB信息。 網絡
把進程的PCB移入相應的隊列,如就緒、在某事件阻塞等隊列。數據結構
選擇另外一個進程執行,並更新其PCB。異步
更新內存管理的數據結構。socket
恢復處理機上下文。
注:總而言之就是很耗資源的
正在執行的進程,因爲期待的某些事件未發生,如請求系統資源失敗、等待某種操做的完成、新數據還沒有到達或無新工做作等,則由系統自動執行阻塞原語(Block),使本身由運行狀態變爲阻塞狀態。可見,進程的阻塞是進程自身的一種主動行爲,也所以只有處於運行態的進程(得到CPU),纔可能將其轉爲阻塞狀態。當進程進入阻塞狀態,是不佔用CPU資源的。
文件描述符(File descriptor)是計算機科學中的一個術語,是一個用於表述指向文件的引用的抽象化概念。
文件描述符在形式上是一個非負整數。實際上,它是一個索引值,指向內核爲每個進程所維護的該進程打開文件的記錄表。當程序打開一個現有文件或者建立一個新文件時,內核向進程返回一個文件描述符。在程序設計中,一些涉及底層的程序編寫每每會圍繞着文件描述符展開。可是文件描述符這一律念每每只適用於UNIX、Linux這樣的操做系統。
緩存 I/O 又被稱做標準 I/O,大多數文件系統的默認 I/O 操做都是緩存 I/O。在 Linux 的緩存 I/O 機制中,操做系統會將 I/O 的數據緩存在文件系統的頁緩存( page cache )中,也就是說,數據會先被拷貝到操做系統內核的緩衝區中,而後纔會從操做系統內核的緩衝區拷貝到應用程序的地址空間。用戶空間無法直接訪問內核空間的,內核態到用戶態的數據拷貝
思考:爲何數據必定要先到內核區,直接到用戶內存不是更直接嗎?
緩存 I/O 的缺點:
數據在傳輸過程當中須要在應用程序地址空間和內核進行屢次數據拷貝操做,這些數據拷貝操做所帶來的 CPU 以及內存開銷是很是大的。
IO模式
對於一次IO訪問(以read舉例),數據會先被拷貝到操做系統內核的緩衝區中,而後纔會從操做系統內核的緩衝區拷貝到應用程序的地址空間。因此說,當一個read操做發生時,它會經歷兩個階段:
1. 等待數據準備 (Waiting for the data to be ready) 等待客戶端鏈接(conn ,addr 客戶端的每個鏈接就是一個socket對象)
2. 將數據從內核拷貝到進程中 (Copying the data from the kernel to the process)
正式由於這兩個階段,linux系統產生了下面五種網絡模式的方案。
- 阻塞 I/O(blocking IO)
- 非阻塞 I/O(nonblocking IO)
- I/O 多路複用( IO multiplexing)
- 信號驅動 I/O( signal driven IO)
- 異步 I/O(asynchronous IO)
注:因爲signal driven IO在實際中並不經常使用,因此我這隻說起剩下的四種IO Model。
blocking IO (阻塞IO)
在linux中,默認狀況下全部的socket都是blocking,一個典型的讀操做流程大概是這樣:
當用戶進程調用了recvfrom這個系統調用,kernel就開始了IO的第一個階段:準備數據(對於網絡IO來講,不少時候數據在一開始尚未到達。好比,尚未收到一個完整的UDP包。這個時候kernel就要等待足夠的數據到來)。這個過程須要等待,也就是說數據被拷貝到操做系統內核的緩衝區中是須要一個過程的。而在用戶進程這邊,整個進程會被阻塞(固然,是進程本身選擇的阻塞)。當kernel一直等到數據準備好了,它就會將數據從kernel中拷貝到用戶內存,而後kernel返回結果,用戶進程才解除block的狀態,從新運行起來。
因此,blocking IO的特色就是在IO執行的兩個階段都被block了。
linux下,能夠經過設置socket使其變爲non-blocking。當對一個non-blocking socket執行讀操做時,流程是這個樣子:
當用戶進程發出read操做時,若是kernel中的數據尚未準備好,那麼它並不會block用戶進程,而是馬上返回一個error。從用戶進程角度講 ,它發起一個read操做後,並不須要等待,而是立刻就獲得了一個結果。用戶進程判斷結果是一個error時,它就知道數據尚未準備好,因而它能夠再次發送read操做。一旦kernel中的數據準備好了,而且又再次收到了用戶進程的system call,那麼它立刻就將數據拷貝到了用戶內存,而後返回。
因此,nonblocking IO的特色是用戶進程須要不斷的主動詢問kernel數據好了沒有。
IO multiplexing就是咱們說的select,poll,epoll,有些地方也稱這種IO方式爲event driven IO。select/epoll的好處就在於單個process就能夠同時處理多個網絡鏈接的IO。它的基本原理就是select,poll,epoll這個function會不斷的輪詢所負責的全部socket,當某個socket有數據到達了,就通知用戶進程。
當用戶進程調用了select,那麼整個進程會被block
,而同時,kernel會「監視」全部select負責的socket,當任何一個socket中的數據準備好了,select就會返回。這個時候用戶進程再調用read操做,將數據從kernel拷貝到用戶進程。
因此,I/O 多路複用的特色是經過一種機制一個進程能同時等待多個文件描述符,而這些文件描述符(套接字描述符)其中的任意一個進入讀就緒狀態,select()函數就能夠返回。
這個圖和blocking IO的圖其實並無太大的不一樣,事實上,還更差一些。由於這裏須要使用兩個system call (select 和 recvfrom),而blocking IO只調用了一個system call (recvfrom)。可是,用select的優點在於它能夠同時處理多個connection。
因此,若是處理的鏈接數不是很高的話,使用select/epoll的web server不必定比使用multi-threading + blocking IO的web server性能更好,可能延遲還更大。select/epoll的優點並非對於單個鏈接能處理得更快,而是在於能處理更多的鏈接。)
在IO multiplexing Model中,實際中,對於每個socket,通常都設置成爲non-blocking,可是,如上圖所示,整個用戶的process實際上是一直被block的。只不過process是被select這個函數block,而不是被socket IO給block。
inux下的asynchronous IO其實用得不多。先看一下它的流程:
用戶進程發起read操做以後,馬上就能夠開始去作其它的事。而另外一方面,從kernel的角度,當它受到一個asynchronous read以後,首先它會馬上返回,因此不會對用戶進程產生任何block。而後,kernel會等待數據準備完成,而後將數據拷貝到用戶內存,當這一切都完成以後,kernel會給用戶進程發送一個signal,告訴它read操做完成了。
sellect、poll、epoll三者的區別
select
select最先於1983年出如今4.2BSD中,它經過一個select()系統調用來監視多個文件描述符的數組,當select()返回後,該數組中就緒的文件描述符便會被內核修改標誌位,使得進程能夠得到這些文件描述符從而進行後續的讀寫操做。
select目前幾乎在全部的平臺上支持,其良好跨平臺支持也是它的一個優勢,事實上從如今看來,這也是它所剩很少的優勢之一。
select的一個缺點在於單個進程可以監視的文件描述符的數量存在最大限制,在Linux上通常爲1024,不過能夠經過修改宏定義甚至從新編譯內核的方式提高這一限制。
另外,select()所維護的存儲大量文件描述符的數據結構,隨着文件描述符數量的增大,其複製的開銷也線性增加。同時,因爲網絡響應時間的延遲使得大量TCP鏈接處於非活躍狀態,但調用select()會對全部socket進行一次線性掃描,因此這也浪費了必定的開銷。
poll
poll在1986年誕生於System V Release 3,它和select在本質上沒有多大差異,可是poll沒有最大文件描述符數量的限制。
poll和select一樣存在一個缺點就是,包含大量文件描述符的數組被總體複製於用戶態和內核的地址空間之間,而不論這些文件描述符是否就緒,它的開銷隨着文件描述符數量的增長而線性增大。另外,select()和poll()將就緒的文件描述符告訴進程後,若是進程沒有對其進行IO操做,那麼下次調用select()和poll()的時候將再次報告這些文件描述符,因此它們通常不會丟失就緒的消息,這種方式稱爲水平觸發(Level Triggered)。
epoll
直到Linux2.6纔出現了由內核直接支持的實現方法,那就是epoll,它幾乎具有了以前所說的一切優勢,被公認爲Linux2.6下性能最好的多路I/O就緒通知方法。
epoll能夠同時支持水平觸發和邊緣觸發(Edge Triggered,只告訴進程哪些文件描述符剛剛變爲就緒狀態,它只說一遍,若是咱們沒有采起行動,那麼它將不會再次告知,這種方式稱爲邊緣觸發),理論上邊緣觸發的性能要更高一些,可是代碼實現至關複雜。
epoll一樣只告知那些就緒的文件描述符,並且當咱們調用epoll_wait()得到就緒文件描述符時,返回的不是實際的描述符,而是一個表明就緒描述符數量的值,你只須要去epoll指定的一個數組中依次取得相應數量的文件描述符便可,這裏也使用了內存映射(mmap)技術,這樣便完全省掉了這些文件描述符在系統調用時複製的開銷。
另外一個本質的改進在於epoll採用基於事件的就緒通知方式。在select/poll中,進程只有在調用必定的方法後,內核纔對全部監視的文件描述符進行掃描,而epoll事先經過epoll_ctl()來註冊一個文件描述符,一旦基於某個文件描述符就緒時,內核會採用相似callback的回調機制,迅速激活這個文件描述符,當進程調用epoll_wait()時便獲得通知。