1五、Hive函數詳解與案列實戰

一、Hive系統內置函數

1.一、數值計算函數

一、取整函數: round

語法: round(double a)
返回值: BIGINT
說明: 返回double類型的整數值部分 (遵循四捨五入)php

hive> select round(3.1415926) from tableName;
3
hive> select round(3.5) from tableName;
4
hive> create table tableName as select round(9542.158) from tableName;
二、指定精度取整函數: round

語法: round(double a, int d)
返回值: DOUBLE
說明: 返回指定精度d的double類型java

hive> select round(3.1415926,4) from tableName;
3.1416
三、向下取整函數: floor

語法: floor(double a)
返回值: BIGINT
說明: 返回等於或者小於該double變量的最大的整數node

hive> select floor(3.1415926) from tableName;
3
hive> select floor(25) from tableName;
25
四、向上取整函數: ceil

語法: ceil(double a)
返回值: BIGINT
說明: 返回等於或者大於該double變量的最小的整數sql

hive> select ceil(3.1415926) from tableName;
4
hive> select ceil(46) from tableName;
46
五、向上取整函數: ceiling

語法: ceiling(double a)
返回值: BIGINT
說明: 與ceil功能相同數據庫

hive> select ceiling(3.1415926) from tableName;
4
hive> select ceiling(46) from tableName;
46
六、取隨機數函數: rand

語法: rand(),rand(int seed)
返回值: double
說明: 返回一個0到1範圍內的隨機數。若是指定種子seed,則會等到一個穩定的隨機數序列express

hive> select rand() from tableName;
0.5577432776034763
hive> select rand() from tableName;
0.6638336467363424
hive> select rand(100) from tableName;
0.7220096548596434
hive> select rand(100) from tableName;
0.7220096548596434

1.二、日期函數

一、UNIX時間戳轉日期函數: from_unixtime

語法: from_unixtime(bigint unixtime[, string format])
返回值: string
說明: 轉化UNIX時間戳(從1970-01-01 00:00:00 UTC到指定時間的秒數)到當前時區的時間格式apache

hive> select from_unixtime(1323308943,'yyyyMMdd') from tableName;
20111208
二、獲取當前UNIX時間戳函數: unix_timestamp

語法: unix_timestamp()
返回值: bigint
說明: 得到當前時區的UNIX時間戳編程

hive> select unix_timestamp() from tableName;
1323309615
三、日期轉UNIX時間戳函數: unix_timestamp

語法: unix_timestamp(string date)
返回值: bigint
說明: 轉換格式爲"yyyy-MM-dd HH:mm:ss"的日期到UNIX時間戳。若是轉化失敗,則返回0。json

hive> select unix_timestamp('2011-12-07 13:01:03') from tableName;
1323234063
四、指定格式日期轉UNIX時間戳函數: unix_timestamp

語法: unix_timestamp(string date, string pattern)
返回值: bigint
說明: 轉換pattern格式的日期到UNIX時間戳。若是轉化失敗,則返回0。vim

hive> select unix_timestamp('20111207 13:01:03','yyyyMMdd HH:mm:ss') from tableName;
1323234063
五、日期時間轉日期函數: to_date

語法: to_date(string timestamp)
返回值: string
說明: 返回日期時間字段中的日期部分。

hive> select to_date('2011-12-08 10:03:01') from tableName;
2011-12-08
六、日期轉年函數: year

語法: year(string date)
返回值: int
說明: 返回日期中的年。

hive> select year('2011-12-08 10:03:01') from tableName;
2011
hive> select year('2012-12-08') from tableName;
2012
七、日期轉月函數: month

語法: month (string date)
返回值: int
說明: 返回日期中的月份。

hive> select month('2011-12-08 10:03:01') from tableName;
12
hive> select month('2011-08-08') from tableName;
8
八、日期轉天函數: day

語法: day (string date)
返回值: int
說明: 返回日期中的天。

hive> select day('2011-12-08 10:03:01') from tableName;
8
hive> select day('2011-12-24') from tableName;
24
九、日期轉小時函數: hour

語法: hour (string date)
返回值: int
說明: 返回日期中的小時。

hive> select hour('2011-12-08 10:03:01') from tableName;
10
十、日期轉分鐘函數: minute

語法: minute (string date)
返回值: int
說明: 返回日期中的分鐘。

hive> select minute('2011-12-08 10:03:01') from tableName;
3

hive> select second('2011-12-08 10:03:01') from tableName;
1
十二、日期轉周函數: weekofyear

語法: weekofyear (string date)
返回值: int
說明: 返回日期在當前的週數。

hive> select weekofyear('2011-12-08 10:03:01') from tableName;
49
1三、日期比較函數: datediff

語法: datediff(string enddate, string startdate)
返回值: int
說明: 返回結束日期減去開始日期的天數。

hive> select datediff('2012-12-08','2012-05-09') from tableName;
213
1四、日期增長函數: date_add

語法: date_add(string startdate, int days)
返回值: string
說明: 返回開始日期startdate增長days天后的日期。

hive> select date_add('2012-12-08',10) from tableName;
2012-12-18
1五、日期減小函數: date_sub

語法: date_sub (string startdate, int days)
返回值: string
說明: 返回開始日期startdate減小days天后的日期。

hive> select date_sub('2012-12-08',10) from tableName;
2012-11-28

1.三、條件函數

一、If函數: if

語法: if(boolean testCondition, T valueTrue, T valueFalseOrNull)
返回值: T
說明: 當條件testCondition爲TRUE時,返回valueTrue;不然返回valueFalseOrNull

hive> select if(1=2,100,200) from tableName;
200
hive> select if(1=1,100,200) from tableName;
100
二、非空查找函數: COALESCE

語法: COALESCE(T v1, T v2, …)
返回值: T
說明: 返回參數中的第一個非空值;若是全部值都爲NULL,那麼返回NULL

hive> select COALESCE(null,'100','50') from tableName;
100
三、條件判斷函數:CASE

語法: CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END
返回值: T
說明:若是a等於b,那麼返回c;若是a等於d,那麼返回e;不然返回f

hive> Select case 100 when 50 then 'tom' when 100 then 'mary' else 'tim' end from tableName;
mary
hive> Select case 200 when 50 then 'tom' when 100 then 'mary' else 'tim' end from tableName;
tim
四、條件判斷函數:CASE

語法: CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END
返回值: T
說明:若是a爲TRUE,則返回b;若是c爲TRUE,則返回d;不然返回e

hive> select case when 1=2 then 'tom' when 2=2 then 'mary' else 'tim' end from tableName;
mary
hive> select case when 1=1 then 'tom' when 2=2 then 'mary' else 'tim' end from tableName;
tom

1.四、字符串函數

一、字符串長度函數:length

語法: length(string A)
返回值: int
說明:返回字符串A的長度

hive> select length('abcedfg') from tableName;
二、字符串反轉函數:reverse

語法: reverse(string A)
返回值: string
說明:返回字符串A的反轉結果

hive> select reverse('abcedfg') from tableName;
gfdecba
三、字符串鏈接函數:concat

語法: concat(string A, string B…)
返回值: string
說明:返回輸入字符串鏈接後的結果,支持任意個輸入字符串

hive> select concat('abc','def','gh') from tableName;
abcdefgh
四、字符串鏈接並指定字符串分隔符:concat_ws

語法: concat_ws(string SEP, string A, string B…)
返回值: string
說明:返回輸入字符串鏈接後的結果,SEP表示各個字符串間的分隔符

hive> select concat_ws(',','abc','def','gh')from tableName;
abc,def,gh
五、字符串截取函數:substr

語法: substr(string A, int start),substring(string A, int start)
返回值: string
說明:返回字符串A從start位置到結尾的字符串

hive> select substr('abcde',3) from tableName;
cde
hive> select substring('abcde',3) from tableName;
cde
hive>  select substr('abcde',-1) from tableName;  (和ORACLE相同)
e
六、字符串截取函數:substr,substring

語法: substr(string A, int start, int len),substring(string A, int start, int len)
返回值: string
說明:返回字符串A從start位置開始,長度爲len的字符串

hive> select substr('abcde',3,2) from tableName;
cd
hive> select substring('abcde',3,2) from tableName;
cd
hive>select substring('abcde',-2,2) from tableName;
de
七、字符串轉大寫函數:upper,ucase

語法: upper(string A) ucase(string A)
返回值: string
說明:返回字符串A的大寫格式

hive> select upper('abSEd') from tableName;
ABSED
hive> select ucase('abSEd') from tableName;
ABSED
八、字符串轉小寫函數:lower,lcase

語法: lower(string A) lcase(string A)
返回值: string
說明:返回字符串A的小寫格式

hive> select lower('abSEd') from tableName;
absed
hive> select lcase('abSEd') from tableName;
absed
九、去空格函數:trim

語法: trim(string A)
返回值: string
說明:去除字符串兩邊的空格

hive> select trim(' abc ') from tableName;
abc
十、url解析函數 parse_url

語法:
parse_url(string urlString, string partToExtract [, string keyToExtract])
返回值: string
說明:返回URL中指定的部分。partToExtract的有效值爲:HOST, PATH,
QUERY, REF, PROTOCOL, AUTHORITY, FILE, and USERINFO.

hive> select parse_url
('https://www.tableName.com/path1/p.php?k1=v1&k2=v2#Ref1', 'HOST') 
from tableName;
www.tableName.com 
hive> select parse_url
('https://www.tableName.com/path1/p.php?k1=v1&k2=v2#Ref1', 'QUERY', 'k1')
 from tableName;
v1
十一、json解析 get_json_object

語法: get_json_object(string json_string, string path)
返回值: string
說明:解析json的字符串json_string,返回path指定的內容。若是輸入的json字符串無效,那麼返回NULL。

hive> select  get_json_object('{"store":{"fruit":\[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}], "bicycle":{"price":19.95,"color":"red"} },"email":"amy@only_for_json_udf_test.net","owner":"amy"}','$.owner') from tableName;
十二、重複字符串函數:repeat

語法: repeat(string str, int n)
返回值: string
說明:返回重複n次後的str字符串

hive> select repeat('abc',5) from tableName;
abcabcabcabcabc
1三、分割字符串函數: split

語法: split(string str, string pat)
返回值: array
說明: 按照pat字符串分割str,會返回分割後的字符串數組

hive> select split('abtcdtef','t') from tableName;
["ab","cd","ef"]

1.五、集合統計函數

一、個數統計函數: count

語法: count(*), count(expr), count(DISTINCT expr[, expr_.])
返回值:Int

說明: count(*)統計檢索出的行的個數,包括NULL值的行;count(expr)返回指定字段的非空值的個數;count(DISTINCT
expr[, expr_.])返回指定字段的不一樣的非空值的個數

hive> select count(*) from tableName;
20
hive> select count(distinct t) from tableName;
10
二、總和統計函數: sum

語法: sum(col), sum(DISTINCT col)
返回值: double
說明: sum(col)統計結果集中col的相加的結果;sum(DISTINCT col)統計結果中col不一樣值相加的結果

hive> select sum(t) from tableName;
100
hive> select sum(distinct t) from tableName;
70
三、平均值統計函數: avg

語法: avg(col), avg(DISTINCT col)
返回值: double
說明: avg(col)統計結果集中col的平均值;avg(DISTINCT col)統計結果中col不一樣值相加的平均值

hive> select avg(t) from tableName;
50
hive> select avg (distinct t) from tableName;
30
四、最小值統計函數: min

語法: min(col)
返回值: double
說明: 統計結果集中col字段的最小值

hive> select min(t) from tableName;
20
五、最大值統計函數: max

語法: maxcol)
返回值: double
說明: 統計結果集中col字段的最大值

hive> select max(t) from tableName;
120

1.六、複合型構建函數

一、Map類型構建: map

語法: map (key1, value1, key2, value2, …)
說明:根據輸入的key和value對構建map類型

create table score_map(name string, score map<string,int>)
row format delimited fields terminated by '\t' 
collection items terminated by ',' map keys terminated by ':';

建立數據內容以下並加載數據
cd /kkb/install/hivedatas/
vim score_map.txt

zhangsan    數學:80,語文:89,英語:95
lisi    語文:60,數學:80,英語:99

加載數據到hive表當中去
load data local inpath '/kkb/install/hivedatas/score_map.txt' overwrite into table score_map;

map結構數據訪問:
獲取全部的value:
select name,map_values(score) from score_map;

獲取全部的key:
select name,map_keys(score) from score_map;

按照key來進行獲取value值
select name,score["數學"]  from score_map;

查看map元素個數
select name,size(score) from score_map;
二、Struct類型構建: struct

語法: struct(val1, val2, val3, …)
說明:根據輸入的參數構建結構體struct類型,似於C語言中的結構體,內部數據經過X.X來獲取,假設咱們的數據格式是這樣的,電影ABC,有1254人評價過,打分爲7.4分

建立struct表
hive> create table movie_score( name string,  info struct<number:int,score:float> )row format delimited fields terminated by "\t"  collection items terminated by ":"; 

加載數據
cd /kkb/install/hivedatas/
vim struct.txt

ABC 1254:7.4  
DEF 256:4.9  
XYZ 456:5.4

加載數據
load data local inpath '/kkb/install/hivedatas/struct.txt' overwrite into table movie_score;

hive當中查詢數據
hive> select * from movie_score;  
hive> select info.number,info.score from movie_score;  
OK  
1254    7.4  
256     4.9  
456     5.4
三、array類型構建: array

語法: array(val1, val2, …)
說明:根據輸入的參數構建數組array類型

hive> create table  person(name string,work_locations array<string>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';

加載數據到person表當中去
cd /kkb/install/hivedatas/
vim person.txt

數據內容格式以下
biansutao   beijing,shanghai,tianjin,hangzhou
linan   changchu,chengdu,wuhan

加載數據
hive > load  data local inpath '/kkb/install/hivedatas/person.txt' overwrite into table person;

查詢全部數據數據
hive > select * from person;

按照下表索引進行查詢
hive > select work_locations[0] from person;

查詢全部集合數據
hive  > select work_locations from person; 

查詢元素個數
hive >  select size(work_locations) from person;

1.七、複雜型長度統計函數

1.Map類型長度函數: size(Map<k .V>)

語法: size(Map<k .V>)
返回值: int
說明: 返回map類型的長度

hive> select size(t) from map_table2;
2
2.array類型長度函數: size(Array<T>)

語法: size(Array<T>)
返回值: int
說明: 返回array類型的長度

hive> select size(t) from arr_table2;
4
3.類型轉換函數

類型轉換函數: cast
語法: cast(expr as <type>)
返回值: Expected "=" to follow "type"
說明: 返回轉換後的數據類型

hive> select cast('1' as bigint) from tableName;
1

1.八、explode函數

一、使用explode函數將hive表中的Map和Array字段數據進行拆分

lateral view用於和split、explode等UDTF一塊兒使用的,能將一行數據拆分紅多行數據,在此基礎上能夠對拆分的數據進行聚合,lateral view首先爲原始表的每行調用UDTF,UDTF會把一行拆分紅一行或者多行,lateral view在把結果組合,產生一個支持別名表的虛擬表。
其中explode還能夠用於將hive一列中複雜的array或者map結構拆分紅多行

需求:如今有數據格式以下
zhangsan    child1,child2,child3,child4 k1:v1,k2:v2
lisi    child5,child6,child7,child8  k3:v3,k4:v4

字段之間使用\t分割,需求將全部的child進行拆開成爲一列 
+----------+--+
| mychild  |
+----------+--+
| child1   |
| child2   |
| child3   |
| child4   |
| child5   |
| child6   |
| child7   |
| child8   |
+----------+--+

將map的key和value也進行拆開,成爲以下結果

+-----------+-------------+--+
| mymapkey  | mymapvalue  |
+-----------+-------------+--+
| k1        | v1          |
| k2        | v2          |
| k3        | v3          |
| k4        | v4          |
+-----------+-------------+--+
第一步:建立hive數據庫

建立hive數據庫d

第一步:建立hive數據庫

建立hive數據庫d

hive (default)> create database hive_explode;
hive (default)> use hive_explode;
第二步:建立hive表,而後使用explode拆分map和array
create  table hive_explode.t3(name string,
children array<string>,
address Map<string,string>)
row format delimited fields terminated by '\t'  
collection items terminated by ','
map keys terminated by ':' 
stored as textFile;
第三步:加載數據

node03執行如下命令建立表數據文件

cd  /kkb/install/hivedatas/

vim maparray
數據內容格式以下

zhangsan    child1,child2,child3,child4 k1:v1,k2:v2
lisi    child5,child6,child7,child8 k3:v3,k4:v4

hive表當中加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/maparray' into table hive_explode.t3;
第四步:使用explode將hive當中數據拆開

將array當中的數據拆分開

hive (hive_explode)> SELECT explode(children) AS myChild FROM hive_explode.t3;

將map當中的數據拆分開

hive (hive_explode)> SELECT explode(address) AS (myMapKey, myMapValue) FROM hive_explode.t3;
二、使用explode拆分json字符串

需求:如今有一些數據格式以下:

a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]

其中字段與字段之間的分隔符是 |

咱們要解析獲得全部的monthSales對應的值爲如下這一列(行轉列)

4900
2090
6987
第一步:建立hive表
hive (hive_explode)> 
create table hive_explode.explode_lateral_view (
area string, 
goods_id string,
sale_info string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS textfile;
第二步:準備數據並加載數據

準備數據以下

cd /kkb/install/hivedatas
vim explode_json

a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]

加載數據到hive表當中去

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/explode_json' overwrite into table hive_explode.explode_lateral_view;
第三步:使用explode拆分Array
hive (hive_explode)> select explode(split(goods_id,',')) as goods_id from hive_explode.explode_lateral_view;
第四步:使用explode拆解Map
hive (hive_explode)> select explode(split(area,',')) as area from hive_explode.explode_lateral_view;
第五步:拆解json字段
hive (hive_explode)> select explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')) as  sale_info from hive_explode.explode_lateral_view;

而後咱們想用get_json_object來獲取key爲monthSales的數據:

hive (hive_explode)> select get_json_object(explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')),'$.monthSales') as  sale_info from hive_explode.explode_lateral_view;
而後出現異常FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
UDTF explode不能寫在別的函數內
若是你這麼寫,想查兩個字段,select explode(split(area,',')) as area,good_id from explode_lateral_view;
會報錯FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'good_id'
使用UDTF的時候,只支持一個字段,這時候就須要LATERAL VIEW出場了
三、配合LATERAL VIEW使用

配合lateral view查詢多個字段

hive (hive_explode)> select goods_id2,sale_info from explode_lateral_view LATERAL VIEW explode(split(goods_id,','))goods as goods_id2;

其中LATERAL VIEW explode(split(goods_id,','))goods至關於一個虛擬表,與原表explode_lateral_view笛卡爾積關聯。

也能夠多重使用

hive (hive_explode)> select goods_id2,sale_info,area2 from explode_lateral_view  LATERAL VIEW explode(split(goods_id,','))goods as goods_id2 LATERAL VIEW explode(split(area,','))area as area2;

也是三個表笛卡爾積的結果

最終,咱們能夠經過下面的句子,把這個json格式的一行數據,徹底轉換成二維表的方式展示

hive (hive_explode)> select get_json_object(concat('{',sale_info_1,'}'),'$.source') as source, get_json_object(concat('{',sale_info_1,'}'),'$.monthSales') as monthSales, get_json_object(concat('{',sale_info_1,'}'),'$.userCount') as monthSales,  get_json_object(concat('{',sale_info_1,'}'),'$.score') as monthSales from explode_lateral_view   LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{'))sale_info as sale_info_1;

總結:

Lateral View一般和UDTF一塊兒出現,爲了解決UDTF不容許在select字段的問題。
Multiple Lateral View能夠實現相似笛卡爾乘積。
Outer關鍵字能夠把不輸出的UDTF的空結果,輸出成NULL,防止丟失數據。

1.九、列、行互轉函數

1.9.一、列轉行

1.相關函數說明

CONCAT(string A/col, string B/col…):返回輸入字符串鏈接後的結果,支持任意個輸入字符串;

CONCAT_WS(separator, str1, str2,...):它是一個特殊形式的 CONCAT()。第一個參數剩餘參數間的分隔符。分隔符能夠是與剩餘參數同樣的字符串。若是分隔符是 NULL,返回值也將爲 NULL。這個函數會跳過度隔符參數後的任何 NULL 和空字符串。分隔符將被加到被鏈接的字符串之間;

COLLECT_SET(col):函數只接受基本數據類型,它的主要做用是將某字段的值進行去重彙總,產生array類型字段。

2.數據準備

表6-6 數據準備

name constellation blood_type
孫悟空 白羊座 A
老王 射手座 A
宋宋 白羊座 B
豬八戒 白羊座 A
冰冰 射手座 A
3.需求

把星座和血型同樣的人歸類到一塊兒。結果以下:

射手座,A            老王|冰冰
白羊座,A            孫悟空|豬八戒
白羊座,B            宋宋
4.建立本地constellation.txt,導入數據

node03服務器執行如下命令建立文件,注意數據使用\t進行分割

cd /kkb/install/hivedatas
vim constellation.txt
孫悟空 白羊座 A
老王  射手座 A
宋宋  白羊座 B       
豬八戒 白羊座 A
鳳姐  射手座 A
5.建立hive表並導入數據

建立hive表並加載數據

hive (hive_explode)> create table person_info(  name string,  constellation string,  blood_type string)  row format delimited fields terminated by "\t";

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/constellation.txt' into table person_info;
6.按需求查詢數據
hive (hive_explode)> select t1.base, concat_ws('|', collect_set(t1.name)) name from    (select name, concat(constellation, "," , blood_type) base from person_info) t1 group by  t1.base;

1.9.二、行轉列

1.函數說明

EXPLODE(col):將hive一列中複雜的array或者map結構拆分紅多行。

LATERAL VIEW

用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias

解釋:用於和split, explode等UDTF一塊兒使用,它可以將一列數據拆成多行數據,在此基礎上能夠對拆分後的數據進行聚合。

2.數據準備
2.數據準備

數據內容以下,字段之間都是使用\t進行分割

cd /kkb/install/hivedatas

vim movie.txt
《疑犯追蹤》  懸疑,動做,科幻,劇情
《Lie to me》 懸疑,警匪,動做,心理,劇情
《戰狼2》   戰爭,動做,災難
3.需求

將電影分類中的數組數據展開。結果以下:

《疑犯追蹤》  懸疑
《疑犯追蹤》  動做
《疑犯追蹤》  科幻
《疑犯追蹤》  劇情
《Lie to me》 懸疑
《Lie to me》 警匪
《Lie to me》 動做
《Lie to me》 心理
《Lie to me》 劇情
《戰狼2》   戰爭
《戰狼2》   動做
《戰狼2》   災難
4.建立hive表並導入數據

建立hive表

hive (hive_explode)> create table movie_info(
movie string, 
category array<string>
) 
row format delimited fields terminated by "\t" 
collection items terminated by ",";

加載數據

load data local inpath "/kkb/install/hivedatas/movie.txt" into table movie_info;
5.按需求查詢數據
hive (hive_explode)>  
select movie, category_name 
from 
movie_info lateral view explode(category) table_tmp as category_name;

1.十、reflect函數

reflect函數能夠支持在sql中調用java中的自帶函數

使用java.lang.Math當中的Max求兩列中最大值

建立hive表

建立hive表

hive (hive_explode)>  
create table test_udf(col1 int,col2 int)
row format delimited fields terminated by ',';

準備數據並加載數據

cd /kkb/install/hivedatas

vim test_udf

1,2
4,3
6,4
7,5
5,6

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/test_udf' overwrite into table test_udf;

使用java.lang.Math當中的Max求兩列當中的最大值

hive (hive_explode)> select reflect("java.lang.Math","max",col1,col2) from test_udf;
不一樣記錄執行不一樣的java內置函數

建立hive表

hive (hive_explode)> create table test_udf2(class_name string,method_name string,col1 int , col2 int) row format delimited fields terminated by ',';

準備數據

cd /export/servers/hivedatas

vim test_udf2

java.lang.Math,min,1,2
java.lang.Math,max,2,3

加載數據

hive (hive_explode)> load data local inpath '/kkb/install/hivedatas/test_udf2' overwrite into table test_udf2;

執行查詢

hive (hive_explode)> select reflect(class_name,method_name,col1,col2) from test_udf2;
判斷是否爲數字

使用apache commons中的函數,commons下的jar已經包含在hadoop的classpath中,因此能夠直接使用。

使用方式以下:

hive (hive_explode)> select reflect("org.apache.commons.lang.math.NumberUtils","isNumber","123");

1.十一、分析函數

一、分析函數的做用介紹

對於一些比較複雜的數據求取過程,咱們可能就要用到分析函數,分析函數主要用於分組求topN,或者求取百分比,或者進行數據的切片等等,咱們均可以使用分析函數來解決

二、經常使用的分析函數介紹

一、ROW_NUMBER():

從1開始,按照順序,生成分組內記錄的序列,好比,按照pv降序排列,生成分組內天天的pv名次,ROW_NUMBER()的應用場景很是多,再好比,獲取分組內排序第一的記錄;獲取一個session中的第一條refer等。

二、RANK() :

生成數據項在分組中的排名,排名相等會在名次中留下空位

三、DENSE_RANK() :

生成數據項在分組中的排名,排名相等會在名次中不會留下空位

四、CUME_DIST :

小於等於當前值的行數/分組內總行數。好比,統計小於等於當前薪水的人數,所佔總人數的比例

五、PERCENT_RANK :

分組內當前行的RANK值/分組內總行數

六、NTILE(n) :

用於將分組數據按照順序切分紅n片,返回當前切片值,若是切片不均勻,默認增長第一個切片的分佈。NTILE不支持ROWS BETWEEN,好比 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

三、需求描述

現有數據內容格式以下,分別對應三個字段,cookieid,createtime ,pv,求取每一個cookie訪問pv前三名的數據記錄,其實就是分組求topN,求取每組當中的前三個值

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7
第一步:建立數據庫表

在hive當中建立數據庫表

CREATE EXTERNAL TABLE cookie_pv (
cookieid string,
createtime string, 
pv INT
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ;
第二步:準備數據並加載

node03執行如下命令,建立數據,並加載到hive表當中去

cd /kkb/install/hivedatas
vim cookiepv.txt

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7

加載數據到hive表當中去

load  data  local inpath '/kkb/install/hivedatas/cookiepv.txt'  overwrite into table  cookie_pv
第三步:使用分析函數來求取每一個cookie訪問PV的前三條記錄
SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM cookie_pv 
WHERE rn1 <=  3 ;

二、Hive自定義函數

2.一、自定義函數的基本介紹

1)Hive 自帶了一些函數,好比:max/min等,可是數量有限,本身能夠經過自定義UDF來方便的擴展。

2)當Hive提供的內置函數沒法知足你的業務處理須要時,此時就能夠考慮使用用戶自定義函數(UDF:user-defined function)。

3)根據用戶自定義函數類別分爲如下三種:

​ (1)UDF(User-Defined-Function)

​ 一進一出

​ (2)UDAF(User-Defined Aggregation Function)

​ 彙集函數,多進一出

​ 相似於:count/max/min

​ (3)UDTF(User-Defined Table-Generating Functions)

​ 一進多出

​ 如lateral view explode()

4)官方文檔地址

https://cwiki.apache.org/confluence/display/Hive/HivePlugins

5)編程步驟:

​ (1)繼承org.apache.hadoop.hive.ql.UDF

​ (2)須要實現evaluate函數;evaluate函數支持重載;

6)注意事項

​ (1)UDF必需要有返回類型,能夠返回null,可是返回類型不能爲void;

​ (2)UDF中經常使用Text/LongWritable等類型,不推薦使用java類型;

2.二、自定義函數開發

一、自定義函數的基本介紹

1)Hive 自帶了一些函數,好比:max/min等,可是數量有限,本身能夠經過自定義UDF來方便的擴展。

2)當Hive提供的內置函數沒法知足你的業務處理須要時,此時就能夠考慮使用用戶自定義函數(UDF:user-defined function)。

3)根據用戶自定義函數類別分爲如下三種:

​ (1)UDF(User-Defined-Function)

​ 一進一出

​ (2)UDAF(User-Defined Aggregation Function)

​ 彙集函數,多進一出

​ 相似於:count/max/min

​ (3)UDTF(User-Defined Table-Generating Functions)

​ 一進多出

​ 如lateral view explode()

4)官方文檔地址

https://cwiki.apache.org/confluence/display/Hive/HivePlugins

5)編程步驟:

​ (1)繼承org.apache.hadoop.hive.ql.UDF

​ (2)須要實現evaluate函數;evaluate函數支持重載;

6)注意事項

​ (1)UDF必需要有返回類型,能夠返回null,可是返回類型不能爲void;

​ (2)UDF中經常使用Text/LongWritable等類型,不推薦使用java類型;

二、自定義函數開發
第一步:建立maven java 工程,並導入jar包
<repositories>
    <repository>
        <id>cloudera</id>
 <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
    </repository>
</repositories>
<dependencies>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.6.0-cdh5.14.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hive</groupId>
        <artifactId>hive-exec</artifactId>
        <version>1.1.0-cdh5.14.2</version>
    </dependency>
</dependencies>
<build>
<plugins>
    <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <version>3.0</version>
        <configuration>
            <source>1.8</source>
            <target>1.8</target>
            <encoding>UTF-8</encoding>
        </configuration>
    </plugin>
     <plugin>
         <groupId>org.apache.maven.plugins</groupId>
         <artifactId>maven-shade-plugin</artifactId>
         <version>2.2</version>
         <executions>
             <execution>
                 <phase>package</phase>
                 <goals>
                     <goal>shade</goal>
                 </goals>
                 <configuration>
                     <filters>
                         <filter>
                             <artifact>*:*</artifact>
                             <excludes>
                                 <exclude>META-INF/*.SF</exclude>
                                 <exclude>META-INF/*.DSA</exclude>
                                 <exclude>META-INF/*/RSA</exclude>
                             </excludes>
                         </filter>
                     </filters>
                 </configuration>
             </execution>
         </executions>
     </plugin>
</plugins>
</build>
第二步:開發java類繼承UDF,並重載evaluate 方法
public class MyUDF extends UDF {
     public Text evaluate(final Text s) {
         if (null == s) {
             return null;
         }
         //**返回大寫字母         
         return new Text(s.toString().toUpperCase());
     }
 }
第三步:將咱們的項目打包,並上傳到hive的lib目錄下

使用maven的package進行打包,將咱們打包好的jar包上傳到node03服務器的/kkb/install/hive-1.1.0-cdh5.14.2/lib 這個路徑下

第四步:添加咱們的jar包

重命名咱們的jar包名稱

cd /kkb/install/hive-1.1.0-cdh5.14.2/lib
mv original-day_hive_udf-1.0-SNAPSHOT.jar udf.jar

hive的客戶端添加咱們的jar包

0: jdbc:hive2://node03:10000> add jar /kkb/install/hive-1.1.0-cdh5.14.2/lib/udf.jar;
第五步:設置函數與咱們的自定義函數關聯
0: jdbc:hive2://node03:10000> create temporary function tolowercase as 'com.kkb.udf.MyUDF';
第六步:使用自定義函數
0: jdbc:hive2://node03:10000>select tolowercase('abc');

hive當中如何建立永久函數

在hive當中添加臨時函數,須要咱們每次進入hive客戶端的時候都須要添加如下,退出hive客戶端臨時函數就會失效,那麼咱們也能夠建立永久函數來讓其不會失效

建立永久函數

一、指定數據庫,將咱們的函數建立到指定的數據庫下面
0: jdbc:hive2://node03:10000>use myhive;

二、使用add jar添加咱們的jar包到hive當中來
0: jdbc:hive2://node03:10000>add jar /kkb/install/hive-1.1.0-cdh5.14.2/lib/udf.jar;

三、查看咱們添加的全部的jar包
0: jdbc:hive2://node03:10000>list  jars;

四、建立永久函數,與咱們的函數進行關聯
0: jdbc:hive2://node03:10000>create  function myuppercase as 'com.kkb.udf.MyUDF';

五、查看咱們的永久函數
0: jdbc:hive2://node03:10000>show functions like 'my*';

六、使用永久函數
0: jdbc:hive2://node03:10000>select myhive.myuppercase('helloworld');

七、刪除永久函數
0: jdbc:hive2://node03:10000>drop function myhive.myuppercase;

八、查看函數
 show functions like 'my*';
相關文章
相關標籤/搜索