京東2019春招算法工程師筆試題 還原

題目連接:https://www.nowcoder.com/questionTerminal/49c5284278974cbda474ec13d8bd86a9ios

題目大意

  略c++

分析1

  爲了兼容題目要求,我在 0 位置和 n + 1 位置設置了值爲 1 的哨兵,如此一來,前兩個條件均可以無視,只須要關注第 3 個條件便可。
  我首先想到的第一個DP是從後往前遞推(詳細見代碼註釋),不過只能過60%的案例,貼在這裏給本身看看,正解在分析2。

代碼以下(失敗的DP,TLE)

 1 #include <bits/stdc++.h>
 2 using namespace std;  3  
 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
 5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12  
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15  
 16 #define LOWBIT(x) ((x)&(-x))
 17  
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20  
 21 #define ms0(a) memset(a,0,sizeof(a))
 22 #define msI(a) memset(a,inf,sizeof(a))
 23 #define msM(a) memset(a,-1,sizeof(a))
 24 
 25 #define MP make_pair
 26 #define PB push_back
 27 #define ft first
 28 #define sd second
 29  
 30 template<typename T1, typename T2>
 31 istream &operator>>(istream &in, pair<T1, T2> &p) {  32     in >> p.first >> p.second;  33     return in;  34 }  35  
 36 template<typename T>
 37 istream &operator>>(istream &in, vector<T> &v) {  38     for (auto &x: v)  39         in >> x;  40     return in;  41 }  42  
 43 template<typename T1, typename T2>
 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {  45     out << "[" << p.first << ", " << p.second << "]" << "\n";  46     return out;  47 }  48 
 49 inline int gc(){  50     static const int BUF = 1e7;  51     static char buf[BUF], *bg = buf + BUF, *ed = bg;  52     
 53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);  54     return *bg++;  55 }  56 
 57 inline int ri(){  58     int x = 0, f = 1, c = gc();  59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());  60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());  61     return x*f;  62 }  63  
 64 typedef long long LL;  65 typedef unsigned long long uLL;  66 typedef pair< double, double > PDD;  67 typedef pair< int, int > PII;  68 typedef pair< string, int > PSI;  69 typedef set< int > SI;  70 typedef vector< int > VI;  71 typedef vector< PII > VPII;  72 typedef map< int, int > MII;  73 typedef pair< LL, LL > PLL;  74 typedef vector< LL > VL;  75 typedef vector< VL > VVL;  76 const double EPS = 1e-10;  77 const LL inf = 0x7fffffff;  78 const LL infLL = 0x7fffffffffffffffLL;  79 const LL mod = 998244353;  80 const int maxN = 1e4 + 7;  81 const LL ONE = 1;  82 const LL evenBits = 0xaaaaaaaaaaaaaaaa;  83 const LL oddBits = 0x5555555555555555;  84 
 85 int n, a[maxN];  86 // dp[x][y][z]表示x位置的後一個元素爲y,再後一個元素爲z,這種狀況下前x+2長度一共有多少種 
 87 LL dp[2][207][207];  88 LL ans = 0;  89 
 90 void add_mod(LL &a, LL b) {  91     a = (a + b) % mod;  92 }  93 
 94 /*
 95 // x:當前處理到的位置  96 // y:第 x + 1 位置元素的值  97 // z:第 x + 2 位置元素的值  98 unordered_map< LL, int > dp;  99 inline LL dfs(LL x, int y, int z) { 100  if(x == 0) return y <= max(z, a[x]); 101  LL tmp = (x << 16) + (y << 8) + z; 102  if(dp.find(tmp) != dp.end()) return dp[tmp]; 103  LL ret = 0; 104  int s = 1, t = 200 105  if(a[x]) s = t = a[x]; 106     
107  For(i, s, t) if(y <= max(z, i)) add_mod(ret, dfs(x - 1, i, y)); 108     
109  return dp[tmp] = ret % mod; 110 } 111 */
112 
113 
114 
115 int main(){ 116  INIT(); 117     cin >> n; 118     For(i, 1, n) cin >> a[i]; 119     a[0] = 1; 120     For(y, 1, 200) For(z, 1, 200) dp[0][y][z] = y <= max(z, a[0]); 121     
122     int now = 0; 123     For(x, 1, n) { 124         now = !now; 125  ms0(dp[now]); 126         For(y, 1, 200) { 127             For(z, 1, 200) { 128                 int s = 1, t = 200; 129                 if(a[x]) s = t = a[x]; 130                 For(i, s, t) if(y <= max(z, i)) add_mod(dp[now][y][z], dp[!now][i][y]); 131  } 132  } 133  } 134     
135     cout << dp[now][1][1] << endl; 136     return 0; 137 }
View Code

 

分析2

   假定 a[i] 爲所求序列的最後一個元素,那麼以 a[i] 爲結尾的可還原序列種數爲$\sum_{j = a[i]}^{200} (以 a[i - 1] = j 爲結尾的可還原序列種數)$,特別要注意的是再計算以 a[i] 爲結尾的可還原序列種數時,a[i - 1] 和 a[i - 2] 的大小關係能夠大於,能夠等於,也能夠小於。所以咱們若是以上面的方式遞推地進行DP,最後兩個元素的大小關係就必須做爲 dp 數組的一個維度。數組

  定義 dp[i][j][k(0:>/1:=/2:<)] 爲以 a[i] = j 結尾,a[i] 和 a[i - 1] 的大小關係爲 k 時的可還原序列種數。ide

  狀態轉移方程以下:優化

  1. 當 k == 0時,$dp[i][j][0] = \sum_{h = j + 1}^{200} \sum_{k = 0}^{1} dp[i - 1][h][k]$,這裏 k 不能取 2,否則 a[i - 1] 將大於兩邊,爲不合法序列。
  2. 當 k == 1時,$dp[i][j][1] = \sum_{k = 0}^{2} dp[i - 1][j][k]$。
  3. 當 k == 2時,$dp[i][j][2] = \sum_{h = 1}^{j - 1} \sum_{k = 0}^{2} dp[i - 1][h][k]$。

  每次要求和很是麻煩,所以咱們能夠預處理前綴和。spa

  第一個優化,由上面的分析能夠看出,若是把 a[1] 做爲第一項,咱們必需要先算出全部 dp[2][j][k] 才能進行DP,而 a[1],a[2],起初都是不肯定的,爲此咱們能夠設置哨兵 a[-1] = a[0] = 1,這樣的話全部 dp[0][j][k] 一目瞭然。3d

  第二個優化,若是 a[n] 不爲 0,那答案就是 $(dp[n][a[n]][0] + dp[n][a[n]][1])$,而若是 a[n] 爲 0,那麼答案就爲$\sum_{j = 1}^{200} (dp[n][j][0] + dp[n][j][1])$,還要分狀況討論,爲此咱們能夠設置一個哨兵 a[n + 1] = 1,算的時候算到 n + 1,就不用討論了。code

代碼以下

 1 #include <bits/stdc++.h>
 2 using namespace std;  3  
 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
 5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12  
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15  
 16 #define LOWBIT(x) ((x)&(-x))
 17  
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20  
 21 #define ms0(a) memset(a,0,sizeof(a))
 22 #define msI(a) memset(a,inf,sizeof(a))
 23 #define msM(a) memset(a,-1,sizeof(a))
 24 
 25 #define MP make_pair
 26 #define PB push_back
 27 #define ft first
 28 #define sd second
 29  
 30 template<typename T1, typename T2>
 31 istream &operator>>(istream &in, pair<T1, T2> &p) {  32     in >> p.first >> p.second;  33     return in;  34 }  35  
 36 template<typename T>
 37 istream &operator>>(istream &in, vector<T> &v) {  38     for (auto &x: v)  39         in >> x;  40     return in;  41 }  42  
 43 template<typename T1, typename T2>
 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {  45     out << "[" << p.first << ", " << p.second << "]" << "\n";  46     return out;  47 }  48 
 49 inline int gc(){  50     static const int BUF = 1e7;  51     static char buf[BUF], *bg = buf + BUF, *ed = bg;  52     
 53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);  54     return *bg++;  55 }  56 
 57 inline int ri(){  58     int x = 0, f = 1, c = gc();  59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());  60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());  61     return x*f;  62 }  63  
 64 typedef long long LL;  65 typedef unsigned long long uLL;  66 typedef pair< double, double > PDD;  67 typedef pair< int, int > PII;  68 typedef pair< string, int > PSI;  69 typedef set< int > SI;  70 typedef vector< int > VI;  71 typedef vector< PII > VPII;  72 typedef map< int, int > MII;  73 typedef pair< LL, LL > PLL;  74 typedef vector< LL > VL;  75 typedef vector< VL > VVL;  76 const double EPS = 1e-10;  77 const LL inf = 0x7fffffff;  78 const LL infLL = 0x7fffffffffffffffLL;  79 const LL mod = 998244353;  80 const int maxN = 1e4 + 7;  81 const LL ONE = 1;  82 const LL evenBits = 0xaaaaaaaaaaaaaaaa;  83 const LL oddBits = 0x5555555555555555;  84 
 85 int n, a[maxN];  86 // dp[i][j][0/1/2] 表明以a[i]爲結尾,a[i] = j時的序列種數。  87 // 第三維表明a[i-1]和a[i]的大小關係(>, ==, <)。 
 88 LL dp[maxN][207][3];  89 LL preSum1[207], preSum2[207];  90 
 91 int main(){  92  INIT();  93     cin >> n;  94     For(i, 1, n) cin >> a[i];  95     a[0] = a[n + 1] = 1;// a[-1] = 1 // 一共3個哨兵  96     
 97     // 預處理 
 98     dp[0][1][1] = 1;  99     For(i, 1, 200) preSum1[i] = preSum2[i] = 1; 100     
101     For(i, 1, n + 1) { 102         int s = 1, t = 200; 103         if(a[i]) s = t = a[i]; 104         
105  For(j, s, t) { 106             dp[i][j][0] = (preSum2[200] - preSum2[j]) % mod; 107             dp[i][j][1] = (dp[i - 1][j][0] + dp[i - 1][j][1] + dp[i - 1][j][2]) % mod; 108             dp[i][j][2] = preSum1[j - 1] % mod; 109  } 110         // 更新前綴和 
111         For(j, 1, 200) { 112             preSum1[j] = preSum1[j - 1] + dp[i][j][0] + dp[i][j][1] + dp[i][j][2]; 113             preSum2[j] = preSum2[j - 1] + dp[i][j][0] + dp[i][j][1]; 114  } 115         
116  } 117     
118     cout << (dp[n + 1][1][0]+dp[n + 1][1][1]) % mod << endl; 119     return 0; 120 }
View Code
相關文章
相關標籤/搜索