流量比較大的日誌要是直接寫入Hadoop對Namenode負載過大,因此入庫前合併,能夠把各個節點的日誌湊併成一個文件寫入HDFS。 根據狀況按期合成,寫入到hdfs裏面。java
我們看看日誌的大小,200G的dns日誌文件,我壓縮到了18G,要是用awk perl固然也能夠,可是處理速度確定沒有分佈式那樣的給力。node
Hadoop Streaming原理python
mapper和reducer會從標準輸入中讀取用戶數據,一行一行處理後發送給標準輸出。Streaming工具會建立MapReduce做業,發送給各個tasktracker,同時監控整個做業的執行過程。shell
任何語言,只要是方便接收標準輸入輸出就能夠作mapreduce~bash
再搞以前咱們先簡單測試下shell模擬mapreduce的性能速度~ app
看下他的結果,350M的文件用時35秒左右。jsp
這是2G的日誌文件,竟然用了3分鐘。 固然和我寫的腳本也有問題,咱們是模擬mapreduce的方式,而不是調用shell下牛逼的awk,gawk處理。分佈式
awk的速度 !果真很霸道,處理日誌的時候,我也很喜歡用awk,只是學習的難度有點大,不像別的shell組件那麼靈活簡單。ide
這是官方的提供的兩個demo ~ 工具
map.py
#!/usr/bin/env python """A more advanced Mapper, using Python iterators and generators.""" import sys def read_input(file): for line in file: # split the line into words yield line.split() def main(separator='\t'): # input comes from STDIN (standard input) data = read_input(sys.stdin) for words in data: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 for word in words: print '%s%s%d' % (word, separator, 1) if __name__ == "__main__": main()
reduce.py的修改方式
#!/usr/bin/env python """A more advanced Reducer, using Python iterators and generators.""" from itertools import groupby from operator import itemgetter import sys def read_mapper_output(file, separator='\t'): for line in file: yield line.rstrip().split(separator, 1) def main(separator='\t'): # input comes from STDIN (standard input) data = read_mapper_output(sys.stdin, separator=separator) # groupby groups multiple word-count pairs by word, # and creates an iterator that returns consecutive keys and their group: # current_word - string containing a word (the key) # group - iterator yielding all ["<current_word>", "<count>"] items for current_word, group in groupby(data, itemgetter(0)): try: total_count = sum(int(count) for current_word, count in group) print "%s%s%d" % (current_word, separator, total_count) except ValueError: # count was not a number, so silently discard this item pass if __name__ == "__main__": main()
我們再簡單點:
#!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print '%s\t%s' % (word, 1)
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None for line in sys.stdin: line = line.strip() word, count = line.split('\t', 1) try: count = int(count) except ValueError: continue if current_word == word: current_count += count else: if current_word: print '%s\t%s' % (current_word, current_count) current_count = count current_word = word if current_word == word: print '%s\t%s' % (current_word, current_count)
我們就簡單模擬下數據,跑個測試
剩下就沒啥了,在hadoop集羣環境下,運行hadoop的steaming.jar組件,加入mapreduce的腳本,指定輸出就好了. 下面的例子我用的是shell的成分。
[root@101 cron]#$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-*-streaming.jar \ -input myInputDirs \ -output myOutputDir \ -mapper cat \ -reducer wc
詳細的參數,對於我們來講×××能能夠把tasks的任務數增長下,根據狀況本身測試下,也別過高了,增長負擔。
(1)-input:輸入文件路徑
(2)-output:輸出文件路徑
(3)-mapper:用戶本身寫的mapper程序,能夠是可執行文件或者腳本
(4)-reducer:用戶本身寫的reducer程序,能夠是可執行文件或者腳本
(5)-file:打包文件到提交的做業中,能夠是mapper或者reducer要用的輸入文件,如配置文件,字典等。
(6)-partitioner:用戶自定義的partitioner程序
(7)-combiner:用戶自定義的combiner程序(必須用java實現)
(8)-D:做業的一些屬性(之前用的是-jonconf),具體有:
1)mapred.map.tasks:map task數目
2)mapred.reduce.tasks:reduce task數目
3)stream.map.input.field.separator/stream.map.output.field.separator: map task輸入/輸出數
據的分隔符,默認均爲\t。
4)stream.num.map.output.key.fields:指定map task輸出記錄中key所佔的域數目
5)stream.reduce.input.field.separator/stream.reduce.output.field.separator:reduce task輸入/輸出數據的分隔符,默認均爲\t。
6)stream.num.reduce.output.key.fields:指定reduce task輸出記錄中key所佔的域數目
這裏是統計dns的日誌文件有多少行 ~
在mapreduce做爲參數的時候,不能用太多太複雜的shell語言,他不懂的~
能夠寫成shell文件的模式;
#! /bin/bash while read LINE; do # for word in $LINE # do # echo "$word 1" awk '{print $5}' done done
#! /bin/bash count=0 started=0 word="" while read LINE;do goodk=`echo $LINE | cut -d ' ' -f 1` if [ "x" == x"$goodk" ];then continue fi if [ "$word" != "$goodk" ];then [ $started -ne 0 ] && echo -e "$word\t$count" word=$goodk count=1 started=1 else count=$(( $count + 1 )) fi done
有時候會出現這樣的問題,好好看看本身寫的mapreduce程序 ~
13/12/14 13:26:52 INFO streaming.StreamJob: Tracking URL: http://101.rui.com:50030/jobdetails.jsp?jobid=job_201312131904_0030
13/12/14 13:26:53 INFO streaming.StreamJob: map 0% reduce 0%
13/12/14 13:27:16 INFO streaming.StreamJob: map 100% reduce 100%
13/12/14 13:27:16 INFO streaming.StreamJob: To kill this job, run:
13/12/14 13:27:16 INFO streaming.StreamJob: /usr/local/hadoop/libexec/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201312131904_0030
13/12/14 13:27:16 INFO streaming.StreamJob: Tracking URL: http://101.rui.com:50030/jobdetails.jsp?jobid=job_201312131904_0030
13/12/14 13:27:16 ERROR streaming.StreamJob: Job not successful. Error: # of failed Map Tasks exceeded allowed limit. FailedCount: 1. LastFailedTask: task_201312131904_0030_m_000000
13/12/14 13:27:16 INFO streaming.StreamJob: killJob...
Streaming Command Failed!
python作爲mapreduce執行成功後,結果和日誌通常是放在你指定的目錄下的,結果是在part-00000文件裏面~
下面我們談下,如何入庫和後臺的執行