問題:數組
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.app
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.ide
More practice:性能
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.spa
解決:code
①使用時間複雜度爲O(n)的方法解決(耗時16ms),屬於一種DP問題:遞歸
最大連續子串問題,對於一個元素數爲n的數組,其含有2^n個子序列和n(n+1)/2個子串。若是使用窮舉法,則至少須要O(n^2)的時間才能獲得答案。所以採用Jay Kadane 提出的線性時間的最優解法:it
【注意】io
public class Solution {
public int maxSubArray(int[] nums) {
int sum = 0;
int max = Integer.MIN_VALUE;//若令max的值爲0,會致使數組元素全部的和都爲0的時候返回錯誤
for (int i = 0;i < nums.length ;i ++ ) {
sum += nums[i];
if(max < sum){
max = sum;
}
if (sum <= 0) {
sum = 0;
}
}
return max;
}
}ast
public class Solution {
public int maxSubArray(int[] nums) {
int sum = nums[0];
int max = nums[0];
for(int i = 1; i < nums.length; i++) {
sum = nums[i] + Math.max(sum, 0);
max = Math.max(sum, max);
}
return max;
}
} //13ms
②另外題目要求也能夠採用分治法(遞歸)Divide and Conquer Approach解決該問題,時間複雜度爲O(nlgn)。分治法的思想就相似於二分搜索法,咱們須要把數組一分爲二,分別找出左邊和右邊的最大子數組之和,而後還要從中間開始向左右分別掃描,求出的最大值分別和左右兩邊得出的最大值相比較取最大的那一個。耗時23ms,性能不是很好。
public class Solution { public int maxSubArray(int[] nums) { if (nums.length == 0) { return 0; } return divide(nums,0,nums.length - 1); } public int divide(int[] nums,int left,int right){ if (left >= right) {//若未寫=會提示數組下標越界 return nums[left]; } int mid = (right - left) / 2 + left; int lmax = divide(nums,left,mid - 1); int rmax = divide(nums,mid + 1,right); int mmax = nums[mid];//初始值爲中間值 int sum = mmax; for (int i = mid - 1;i >= left ;i -- ) {//掃描左半部分 sum += nums[i]; mmax = Math.max(mmax,sum); } sum = mmax; for (int i = mid + 1;i <= right ;i ++ ) {//掃描右半部份 sum += nums[i]; mmax = Math.max(mmax,sum); } return Math.max(mmax,Math.max(lmax,rmax)); } }