若是未作特別說明,文中的程序都是 Python3 代碼。框架
載入模塊ide
import QuantLib as ql import pandas as pd import numpy as np import seaborn as sn print(ql.__version__)
1.12
quantlib-python 中 Black Scholes 框架下常見的幾種隨機過程均派生自基類 GeneralizedBlackScholesProcess
,而 GeneralizedBlackScholesProcess
模擬下列 SDE 描述的一維隨機過程:函數
\[ d \ln S_t = \left( r ( t ) - q ( t ) - \frac { \sigma \left( t , S_t \right)^2 } 2 \right) d t + \sigma d W_t \]spa
等式使用風險中性漂移而不是通常漂移 \(\mu\)。風險中性利率由股息率 \(q(t)\) 調整,而且相應的擴散項是 \(\sigma\)。code
做爲基類,GeneralizedBlackScholesProcess
的構造函數爲orm
GeneralizedBlackScholesProcess(x0, dividendTS, riskFreeTS, blackVolTS)
其中:對象
x0
:QuoteHandle
對象,表示 SDE 的起始值;dividendTS
:YieldTermStructureHandle
對象,表示股息率的期限結構riskFreeTS
:YieldTermStructureHandle
對象,表示無風險利率的期限結構blackVolTS
:BlackVolTermStructureHandle
對象,表示波動率的期限結構GeneralizedBlackScholesProcess
提供了相應的檢查器,返回構造函數接受的關鍵參數:blog
stateVariable
;dividendYield
;riskFreeRate
;blackVolatility
從 StochasticProcess1D
繼承來的離散化函數 evolve
,描述 SDE 從 \(t\) 到 \(t + \Delta t\) 的變化。繼承
QuantLib 提供了一些具體的派生類,這些類表明衆所周知的具體過程,如
BlackScholesProcess
:沒有股息率的通常 BS 過程;BlackScholesMertonProcess
:通常 BS 過程;BlackProcess
:通常 Black 過程;GarmanKohlagenProcess
:包含外匯利率的通常 BS 過程這些派生類在構造和調用方式上大同小異,在下面的例子中,咱們將創建一個具備平坦無風險利率、股息率和波動率期限結構的 Black-Scholes-Merton 過程,並畫出模擬結果。
def testingStochasticProcesses1(): refDate = ql.Date(27, ql.January, 2019) riskFreeRate = 0.0321 dividendRate = 0.0128 spot = 52.0 vol = 0.2144 cal = ql.China() dc = ql.ActualActual() rdHandle = ql.YieldTermStructureHandle( ql.FlatForward(refDate, riskFreeRate, dc)) rqHandle = ql.YieldTermStructureHandle( ql.FlatForward(refDate, dividendRate, dc)) spotQuote = ql.SimpleQuote(spot) spotHandle = ql.QuoteHandle( ql.SimpleQuote(spot)) volHandle = ql.BlackVolTermStructureHandle( ql.BlackConstantVol(refDate, cal, vol, dc)) bsmProcess = ql.BlackScholesMertonProcess( spotHandle, rqHandle, rdHandle, volHandle) seed = 1234 unifMt = ql.MersenneTwisterUniformRng(seed) bmGauss = ql.BoxMullerMersenneTwisterGaussianRng(unifMt) dt = 0.004 numVals = 250 bsm = pd.DataFrame() for i in range(10): bsmt = pd.DataFrame( dict( t=np.linspace(0, dt * numVals, numVals + 1), path=np.nan, n='p' + str(i))) bsmt.loc[0, 'path'] = spotQuote.value() x = spotQuote.value() for j in range(1, numVals + 1): dw = bmGauss.next().value() x = bsmProcess.evolve(bsmt.loc[j, 't'], x, dt, dw) bsmt.loc[j, 'path'] = x bsm = pd.concat([bsm, bsmt]) sn.lineplot( x='t', y='path', data=bsm, hue='n', legend=None) testingStochasticProcesses1()