項目 | 內容 |
---|---|
這個做業屬於哪一個課程 | [人工智能](https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019) |
這個做業的要求在哪裏 | [做業要求](https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019/homework/2787) |
我在這個課程的目標是 | 學習瞭解應用人工智能 |
這個做業在哪一個具體方面幫助我實現目標 | 學習Mini Batch梯度降低方法 |
import numpy as np import matplotlib.pyplot as plt from pathlib import Path x_data_name = "TemperatureControlXData.dat" y_data_name = "TemperatureControlYData.dat" class CData(object): def __init__(self, loss, w, b, epoch, iteration): self.loss = loss self.w = w self.b = b self.epoch = epoch self.iteration = iteration def ReadData(): Xfile = Path(x_data_name) Yfile = Path(y_data_name) if Xfile.exists() & Yfile.exists(): X = np.load(Xfile) Y = np.load(Yfile) return X.reshape(1,-1),Y.reshape(1,-1) else: return None,None def ForwardCalculationBatch(W,B,batch_x): Z = np.dot(W, batch_x) + B return Z def BackPropagationBatch(batch_x, batch_y, batch_z): m = batch_x.shape[1] dZ = batch_z - batch_y dB = dZ.sum(axis=1, keepdims=True)/m dW = np.dot(dZ, batch_x.T)/m return dW, dB def UpdateWeights(w, b, dW, dB, eta): w = w - eta*dW b = b - eta*dB return w,b def InitialWeights(num_input, num_output, flag): if flag == 0: # zero W = np.zeros((num_output, num_input)) elif flag == 1: # normalize W = np.random.normal(size=(num_output, num_input)) elif flag == 2: # xavier W=np.random.uniform( -np.sqrt(6/(num_input+num_output)), np.sqrt(6/(num_input+num_output)), size=(num_output,num_input)) B = np.zeros((num_output, 1)) return W,B def CheckLoss(W, B, X, Y): m = X.shape[1] Z = np.dot(W, X) + B LOSS = (Z - Y)**2 loss = LOSS.sum()/m/2 return loss def ShowResult(X, Y, w, b, iteration): # draw sample data plt.plot(X, Y, "b.") # draw predication data PX = np.linspace(0,1,10) PZ = w*PX + b plt.plot(PX, PZ, "r") plt.title("Air Conditioner Power") plt.xlabel("Number of Servers(K)") plt.ylabel("Power of Air Conditioner(KW)") plt.show() print("iteration=",iteration) print("w=%f,b=%f" %(w,b)) def GetBatchSamples(X,Y,batch_size,iteration): num_feature = X.shape[0] start = iteration * batch_size end = start + batch_size batch_x = X[0:num_feature,start:end].reshape(num_feature,batch_size) batch_y = Y[0,start:end].reshape(1,batch_size) return batch_x, batch_y def Shuffle(X, Y): seed = np.random.randint(0,100) np.random.seed(seed) XP = np.random.permutation(X.T) np.random.seed(seed) YP = np.random.permutation(Y.T) return XP.T, YP.T def GetMinimalLossData(dict_loss): key = sorted(dict_loss.keys())[0] w = dict_loss[key].w b = dict_loss[key].b return w,b,dict_loss[key] def ShowLossHistory(dict_loss, method): loss = [] for key in dict_loss: loss.append(key) #plt.plot(loss) plt.plot(loss[30:800]) plt.title(method) plt.xlabel("epoch") plt.ylabel("loss") plt.show() def loss_2d(x,y,n,dict_loss,method,cdata): result_w = cdata.w[0,0] result_b = cdata.b[0,0] # show contour of loss s = 150 W = np.linspace(result_w-1,result_w+1,s) B = np.linspace(result_b-1,result_b+1,s) LOSS = np.zeros((s,s)) for i in range(len(W)): for j in range(len(B)): w = W[i] b = B[j] a = w * x + b loss = CheckLoss(w,b,x,y) LOSS[i,j] = np.round(loss, 2) # end for j # end for i print("please wait for 20 seconds...") while(True): X = [] Y = [] is_first = True loss = 0 for i in range(len(W)): for j in range(len(B)): if LOSS[i,j] != 0: if is_first: loss = LOSS[i,j] X.append(W[i]) Y.append(B[j]) LOSS[i,j] = 0 is_first = False elif LOSS[i,j] == loss: X.append(W[i]) Y.append(B[j]) LOSS[i,j] = 0 # end if # end if # end for j # end for i if is_first == True: break plt.plot(X,Y,'.') # end while # show w,b trace w_history = [] b_history = [] for key in dict_loss: w = dict_loss[key].w[0,0] b = dict_loss[key].b[0,0] if w < result_w-1 or result_b-1 < 2: continue if key == cdata.loss: break # end if w_history.append(w) b_history.append(b) # end for plt.plot(w_history,b_history) plt.xlabel("w") plt.ylabel("b") title = str.format("Method={0}, Epoch={1}, Iteration={2}, Loss={3:.3f}, W={4:.3f}, B={5:.3f}", method, cdata.epoch, cdata.iteration, cdata.loss, cdata.w[0,0], cdata.b[0,0]) plt.title(title) plt.show() if __name__ == '__main__': # 修改method分別爲下面三個參數,運行程序,對比不一樣的運行結果 # SGD, MiniBatch, FullBatch eta = 0.1 max_epoch = 50 batch_size = 5 method = "batch_size="+str(batch_size) W, B = InitialWeights(1,1,0) # calculate loss to decide the stop condition loss = 5 dict_loss = {} # read data X, Y = ReadData() # count of samples num_example = X.shape[1] num_feature = X.shape[0] # if num_example=200, batch_size=10, then iteration=200/10=20 max_iteration = (int)(num_example / batch_size) for epoch in range(max_epoch): #print("epoch=%d" %epoch) for iteration in range(max_iteration): # get x and y value for one sample batch_x, batch_y = GetBatchSamples(X,Y,batch_size,iteration) # get z from x,y batch_z = ForwardCalculationBatch(W, B, batch_x) # calculate gradient of w and b dW, dB = BackPropagationBatch(batch_x, batch_y, batch_z) # update w,b W, B = UpdateWeights(W, B, dW, dB, eta) # calculate loss for this batch loss = CheckLoss(W,B,X,Y) #print(epoch,iteration,loss,W,B) prev_loss = loss dict_loss[loss] = CData(loss, W, B, epoch, iteration) # end for #X,Y = Shuffle(X,Y) # end for ShowLossHistory(dict_loss, method) w,b,cdata = GetMinimalLossData(dict_loss) print(cdata.w, cdata.b) print("epoch=%d, iteration=%d, loss=%f" %(cdata.epoch, cdata.iteration, cdata.loss)) #ShowResult(X, Y, W, B, epoch) print(w,b) x = 346/1000 result = ForwardCalculationBatch(w, b, x) print(result) loss_2d(X,Y,200,dict_loss,method,cdata)
epoch=5
app
輸出結果:dom
w=1.99619285,b=3.00559685
epoch=10
ide
輸出結果:學習
w=1.996016744958851,b=3.0051812577208974
epoch=15
this
輸出結果:人工智能
w=1.994684,b=3.006479
問題二:由於w和b的影響權重實時發生變化,當對於實際數據進行特定調整狀態下,能夠變成一個圓
問題三:咱們對於w和b的取值是離散的,所以沒法完美的到一個值,而是隻能經過無限逼近的方式鎖定一個範圍。spa