人工智能第三次做業

1、緒論

項目 內容
這個做業屬於哪一個課程 [人工智能](https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019)
這個做業的要求在哪裏 [做業要求](https://edu.cnblogs.com/campus/buaa/BUAA-AI-2019/homework/2787)
我在這個課程的目標是 學習瞭解應用人工智能
這個做業在哪一個具體方面幫助我實現目標 學習Mini Batch梯度降低方法

2、代碼實現

import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path

x_data_name = "TemperatureControlXData.dat"
y_data_name = "TemperatureControlYData.dat"


class CData(object):
    def __init__(self, loss, w, b, epoch, iteration):
        self.loss = loss
        self.w = w
        self.b = b
        self.epoch = epoch
        self.iteration = iteration



def ReadData():
    Xfile = Path(x_data_name)
    Yfile = Path(y_data_name)
    if Xfile.exists() & Yfile.exists():
        X = np.load(Xfile)
        Y = np.load(Yfile)
        return X.reshape(1,-1),Y.reshape(1,-1)
    else:
        return None,None

def ForwardCalculationBatch(W,B,batch_x):
    Z = np.dot(W, batch_x) + B
    return Z

def BackPropagationBatch(batch_x, batch_y, batch_z):
    m = batch_x.shape[1]
    dZ = batch_z - batch_y
    dB = dZ.sum(axis=1, keepdims=True)/m
    dW = np.dot(dZ, batch_x.T)/m
    return dW, dB

def UpdateWeights(w, b, dW, dB, eta):
    w = w - eta*dW
    b = b - eta*dB
    return w,b

def InitialWeights(num_input, num_output, flag):
    if flag == 0:
        # zero
        W = np.zeros((num_output, num_input))
    elif flag == 1:
        # normalize
        W = np.random.normal(size=(num_output, num_input))
    elif flag == 2:
        # xavier
        W=np.random.uniform(
            -np.sqrt(6/(num_input+num_output)),
            np.sqrt(6/(num_input+num_output)),
            size=(num_output,num_input))

    B = np.zeros((num_output, 1))
    return W,B

def CheckLoss(W, B, X, Y):
    m = X.shape[1]
    Z = np.dot(W, X) + B
    LOSS = (Z - Y)**2
    loss = LOSS.sum()/m/2
    return loss

def ShowResult(X, Y, w, b, iteration):
    # draw sample data
    plt.plot(X, Y, "b.")
    # draw predication data
    PX = np.linspace(0,1,10)
    PZ = w*PX + b
    plt.plot(PX, PZ, "r")
    plt.title("Air Conditioner Power")
    plt.xlabel("Number of Servers(K)")
    plt.ylabel("Power of Air Conditioner(KW)")
    plt.show()
    print("iteration=",iteration)
    print("w=%f,b=%f" %(w,b))

def GetBatchSamples(X,Y,batch_size,iteration):
    num_feature = X.shape[0]
    start = iteration * batch_size
    end = start + batch_size
    batch_x = X[0:num_feature,start:end].reshape(num_feature,batch_size)
    batch_y = Y[0,start:end].reshape(1,batch_size)
    return batch_x, batch_y

def Shuffle(X, Y):
    seed = np.random.randint(0,100)
    np.random.seed(seed)
    XP = np.random.permutation(X.T)
    np.random.seed(seed)
    YP = np.random.permutation(Y.T)
    return XP.T, YP.T

def GetMinimalLossData(dict_loss):
    key = sorted(dict_loss.keys())[0]
    w = dict_loss[key].w
    b = dict_loss[key].b
    return w,b,dict_loss[key]

def ShowLossHistory(dict_loss, method):
    loss = []
    for key in dict_loss:
        loss.append(key)

    #plt.plot(loss)
    plt.plot(loss[30:800])
    plt.title(method)
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.show()

def loss_2d(x,y,n,dict_loss,method,cdata):

    result_w = cdata.w[0,0]
    result_b = cdata.b[0,0]

    # show contour of loss
    s = 150
    W = np.linspace(result_w-1,result_w+1,s)
    B = np.linspace(result_b-1,result_b+1,s)
    LOSS = np.zeros((s,s))
    for i in range(len(W)):
        for j in range(len(B)):
            w = W[i]
            b = B[j]
            a = w * x + b
            loss = CheckLoss(w,b,x,y)
            LOSS[i,j] = np.round(loss, 2)
        # end for j
    # end for i
    print("please wait for 20 seconds...")
    while(True):
        X = []
        Y = []
        is_first = True
        loss = 0
        for i in range(len(W)):
            for j in range(len(B)):
                if LOSS[i,j] != 0:
                    if is_first:
                        loss = LOSS[i,j]
                        X.append(W[i])
                        Y.append(B[j])
                        LOSS[i,j] = 0
                        is_first = False
                    elif LOSS[i,j] == loss:
                        X.append(W[i])
                        Y.append(B[j])
                        LOSS[i,j] = 0
                    # end if
                # end if
            # end for j
        # end for i
        if is_first == True:
            break
        plt.plot(X,Y,'.')
    # end while

    # show w,b trace
    w_history = []
    b_history = []
    for key in dict_loss:
        w = dict_loss[key].w[0,0]
        b = dict_loss[key].b[0,0]
        if w < result_w-1 or result_b-1 < 2:
            continue
        if key == cdata.loss:
            break
        # end if
        w_history.append(w)
        b_history.append(b)
    # end for
    plt.plot(w_history,b_history)

    plt.xlabel("w")
    plt.ylabel("b")
    title = str.format("Method={0}, Epoch={1}, Iteration={2}, Loss={3:.3f}, W={4:.3f}, B={5:.3f}", method, cdata.epoch, cdata.iteration, cdata.loss, cdata.w[0,0], cdata.b[0,0])
    plt.title(title)
    plt.show()

if __name__ == '__main__':
    
    # 修改method分別爲下面三個參數,運行程序,對比不一樣的運行結果
    # SGD, MiniBatch, FullBatch
    eta = 0.1
    max_epoch = 50
    batch_size = 5
    method = "batch_size="+str(batch_size)
    
    W, B = InitialWeights(1,1,0)
    # calculate loss to decide the stop condition
    loss = 5
    dict_loss = {}
    # read data
    X, Y = ReadData()
    # count of samples
    num_example = X.shape[1]
    num_feature = X.shape[0]


    # if num_example=200, batch_size=10, then iteration=200/10=20
    max_iteration = (int)(num_example / batch_size)
    for epoch in range(max_epoch):
        #print("epoch=%d" %epoch)
        for iteration in range(max_iteration):
            # get x and y value for one sample
            batch_x, batch_y = GetBatchSamples(X,Y,batch_size,iteration)
            # get z from x,y
            batch_z = ForwardCalculationBatch(W, B, batch_x)
            # calculate gradient of w and b
            dW, dB = BackPropagationBatch(batch_x, batch_y, batch_z)
            # update w,b
            W, B = UpdateWeights(W, B, dW, dB, eta)
            
            # calculate loss for this batch
            loss = CheckLoss(W,B,X,Y)
            #print(epoch,iteration,loss,W,B)
            prev_loss = loss

            dict_loss[loss] = CData(loss, W, B, epoch, iteration)            
        # end for
        #X,Y = Shuffle(X,Y)
    # end for

    ShowLossHistory(dict_loss, method)
    w,b,cdata = GetMinimalLossData(dict_loss)
    print(cdata.w, cdata.b)
    print("epoch=%d, iteration=%d, loss=%f" %(cdata.epoch, cdata.iteration, cdata.loss))

    #ShowResult(X, Y, W, B, epoch)
    print(w,b)

    x = 346/1000
    result = ForwardCalculationBatch(w, b, x)
    print(result)
    
loss_2d(X,Y,200,dict_loss,method,cdata)

3、結果展現

epoch=5
app


輸出結果:dom

w=1.99619285,b=3.00559685

epoch=10
ide


輸出結果:學習

w=1.996016744958851,b=3.0051812577208974

epoch=15
this


輸出結果:人工智能

w=1.994684,b=3.006479

4、問題

問題二:由於w和b的影響權重實時發生變化,當對於實際數據進行特定調整狀態下,能夠變成一個圓
問題三:咱們對於w和b的取值是離散的,所以沒法完美的到一個值,而是隻能經過無限逼近的方式鎖定一個範圍。spa

相關文章
相關標籤/搜索