題目html
There are two sorted arrays nums1 and nums2 of size m and n respectively.ide
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).post
Example 1:spa
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:code
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
答案htm
看到題目要求O(log (m+n)),知道應該用二分,可是沒有想到具體實施的辦法,在網上搜了答案,看懂了完成的代碼,這道題刷新了我對二分的見解,神同樣的存在。blog
代碼get
1 #define MIN(a,b) ((a) > (b) ? (b) : (a)) 2 3 4 class Solution { 5 public: 6 int findMedNum(vector<int>::iterator nums1Beg,int nums1Num,vector<int>::iterator nums2Beg,int nums2Num,int med) 7 { 8 if(nums1Num == 0 ) 9 { 10 return *(nums2Beg + med - 1); 11 } 12 if(nums1Num > nums2Num) 13 { 14 return findMedNum(nums2Beg,nums2Num,nums1Beg,nums1Num,med); 15 } 16 17 if(med == 1) 18 { 19 return MIN(*nums1Beg,*nums2Beg); 20 } 21 22 int nums1BegMed = MIN(med / 2, nums1Num); 23 int nums2BegMed = med - nums1BegMed; 24 25 if(*(nums1Beg + nums1BegMed - 1) == *(nums2Beg + nums2BegMed - 1)) 26 { 27 return *(nums1Beg + nums1BegMed - 1); 28 } 29 30 if(*(nums1Beg + nums1BegMed - 1) < *(nums2Beg + nums2BegMed - 1)) 31 { 32 return findMedNum(nums1Beg + nums1BegMed,nums1Num - nums1BegMed,nums2Beg,nums2BegMed,med - nums1BegMed); 33 } 34 35 if(*(nums1Beg + nums1BegMed - 1) > *(nums2Beg + nums2BegMed - 1)) 36 { 37 return findMedNum(nums1Beg,nums1BegMed,nums2Beg + nums2BegMed,nums2Num - nums2BegMed,med - nums2BegMed); 38 } 39 40 return 0; 41 } 42 43 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { 44 if(nums1.size() == 0 && nums2.size() == 0) 45 { 46 return 0; 47 } 48 int totalLen = nums1.size() + nums2.size(); 49 50 if(totalLen & 0x1) 51 { 52 return findMedNum(nums1.begin(),nums1.size(),nums2.begin(),nums2.size(),(totalLen / 2) + 1); 53 } 54 else 55 { 56 int pre = findMedNum(nums1.begin(),nums1.size(),nums2.begin(),nums2.size(),totalLen / 2); 57 int post = findMedNum(nums1.begin(),nums1.size(),nums2.begin(),nums2.size(),(totalLen / 2) + 1); 58 return (double)(pre + post) / 2.0; 59 } 60 61 return 0; 62 } 63 };