Facet['fæsɪt]很難翻譯,只能靠例子來理解了。Solr做者Yonik Seeley也給出更爲直接的名字:導航(Guided Navigation)、參數化查詢(Paramatic Search)。json
上面是比較直接的Faceted Search例子,品牌、產品特徵、賣家,均是 Facet 。而Apple、Lenovo等品牌,就是 Facet values 或者說 Constraints ,而Facet values所帶的統計值就是 Facet count/Constraint count 。ide
2 、Facet 使用ui
q = 超級本
facet = true
facet.field = 產品特性
facet.field = 品牌
facet.field = 賣家this
http://…/select?q=超級本&facet=true&wt=jsonspa
&facet.field=品牌&facet.field=產品特性&facet.field=賣家翻譯
也能夠提交查詢條件,設置fq(filter query)。排序
q = 電腦
facet = true
fq = 價格:[8000 TO *]
facet.mincount = 1 // fq將不符合的字段過濾後,會顯示count爲0
facet.field = 產品特性
facet.field = 品牌
facet.field = 賣家ip
http://…/select?q=超級本&facet=true&wt=jsonci
&fq=價格:[8000 TO *]&facet.mincount=1字符串
&facet.field=品牌&facet.field=產品特性&facet.field=賣家
"facet_counts": { "facet_fields": { "品牌": [ "Apple", 4, "Lenovo", 39 …] "產品特性": [ "顯卡", 42, "酷睿", 38 …] …}}
若是用戶選擇了Apple這個分類,查詢條件中須要添加另一個fq查詢條件,並移除Apple所在的facet.field。
http://…/select?q=超級本&facet=true&wt=json
&fq=價格:[8000 TO *]&fq=品牌:Apple&facet.mincount=1
&facet.field= 品牌 &facet.field=產品特性&facet.field=賣家
3 、Facet 參數
facet.prefix – 限制constaints的前綴
facet.mincount=0 – 限制constants count的最小返回值,默認爲0
facet.sort=count – 排序的方式,根據count或者index
facet.offset=0 – 表示在當前排序狀況下的偏移,能夠作分頁
facet.limit=100 – constraints返回的數目
facet.missing=false – 是否返回沒有值的field
facet.date – Deprecated, use facet.range
facet.query
指定一個查詢字符串做爲Facet Constraint
facet.query = rank:[* TO 20]
facet.query = rank:[21 TO *]
"facet_counts": { "facet_fields": { "品牌": [ "Apple", 4, "Lenovo", 10 …] "產品特性": [ "顯卡", 11, "酷睿", 20 …] …}}
facet.range
http://…/select?&facet=true
&facet.range=price
&facet.range.start=5000
&facet.range.end=8000
&facet.range.gap=1000
<result numFound="27" ... /> ... <lst name="facet_counts"> <lst name="facet_queries"> <int name="rank:[* TO 20]">2</int> <int name="rank:[21 TO *]">15</int> </lst> ...
WARNING: range範圍是左閉右開,[start, end)
facet.pivot
這個是Solr 4.0的新特性,pivot和facet同樣難理解,仍是用例子來說吧。
Syntax: facet.pivot=field1,field2,field3...
e.g. facet.pivot=comment_user, grade
#docs |
#docs grade:好 |
#docs 等級:中 |
#docs 等級:差 |
|
comment_user:1 |
10 |
8 |
1 |
1 |
comment_user:2 |
20 |
18 |
2 |
0 |
comment_user:3 |
15 |
12 |
2 |
1 |
comment_user:4 |
18 |
15 |
2 |
1 |
"facet_counts":{ "facet_pivot":{ "comment_user, grade ":[{ "field":"comment_user", "value":"1", "count":10, "pivot":[{ "field":"grade", "value":"好", "count":8}, { "field":"grade", "value":"中", "count":1}, { "field":"grade", "value":"差", "count":1}] }, { "field":" comment_user ", "value":"2", "count":20, "pivot":[{ …
沒有pivot機制的話,要作到上面那點可能須要屢次查詢:
http://...q= comment&fq= grade:好&facet=true&facet.field=comment_user
http://...q=comment&fq=grade:中&facet=true&facet.field=comment_user
http://...q=comment&fq=grade:差&facet=true&facet.field=comment_user
Facet.pivot - Computes a Matrix of Constraint Counts across multiple Facet Fields. by Yonik Seeley.
上面那個解釋很不錯,只能理解不能翻譯。
facet.pivot本身的理解,就是按照多個維度進行分組查詢,如下是本身的實戰代碼,按照newsType,property兩個維度統計:
public List<ReportNewsTypeDTO> queryNewsType( ReportQuery reportQuery) { HttpSolrServer solrServer = SolrServer.getInstance().getServer(); SolrQuery sQuery = new SolrQuery(); List<ReportNewsTypeDTO> list = new ArrayList<ReportNewsTypeDTO>(); try { String para = this.initReportQueryPara(reportQuery, 0); sQuery.setFacet(true); sQuery.add("facet.pivot", "newsType,property");//根據這兩維度來分組查詢 sQuery.setQuery(para); QueryResponse response = solrServer.query(sQuery,SolrRequest.METHOD.POST); NamedList<List<PivotField>> namedList = response.getFacetPivot(); System.out.println(namedList);//底下爲啥要這樣判斷,把這個值打印出來,你就明白了 if(namedList != null){ List<PivotField> pivotList = null; for(int i=0;i<namedList.size();i++){ pivotList = namedList.getVal(i); if(pivotList != null){ ReportNewsTypeDTO dto = null; for(PivotField pivot:pivotList){ dto = new ReportNewsTypeDTO(); dto.setNewsTypeId((Integer)pivot.getValue()); dto.setNewsTypeName(News.newsTypeMap.get((Integer)pivot.getValue())); int pos = 0; int neg = 0; List<PivotField> fieldList = pivot.getPivot(); if(fieldList != null){ for(PivotField field:fieldList){ int proValue = (Integer) field.getValue(); int count = field.getCount(); if(proValue == 1){ pos = count; }else{ neg = count; } } } dto.setPositiveCount(pos); dto.setNegativeCount(neg); list.add(dto); } } } } return list; } catch (SolrServerException e) { log.error("查詢solr失敗", e); e.printStackTrace(); } finally{ solrServer.shutdown(); solrServer = null; } return list; }namedList打印結果: {newsType,property= [ newsType:8 [4260] [property:1 [3698] null, property:0 [562] null], newsType:1 [1507] [property:1 [1389] null, property:0 [118] null], newsType:2 [1054] [property:1 [909] null, property:0 [145] null], newsType:6 [715] [property:1 [581] null, property:0 [134] null], newsType:4 [675] [property:1 [466] null, property:0 [209] null], newsType:3 [486] [property:1 [397] null, property:0 [89] null], newsType:7 [458] [property:1 [395] null, property:0 [63] null], newsType:5 [289] [property:1 [263] null, property:0 [26] null], newsType:9 [143] [property:1 [138] null, property:0 [5] null] ] } 這下應該明白了。寫到這裏,忽然想到一個,全部的分組查詢統計,無論是一個維度兩個維度均可以使用face.pivot來統計,不錯的東東。