例子1html
先從helloworld開始: python
t@ubuntu:~$ python Python 2.7.6 (default, Oct 26 2016, 20:30:19) [GCC 4.8.4] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> hello=tf.constant('hello,tensorFlow!') >>> sess = tf.Session() >>> print sess.run(hello) hello,tensorFlow! >>> a = tf.constant(10) >>> b = tf.constant(122) >>> print sess.run(a+b) 132
接下去兩個步驟:1,學python;2,看ts;linux
例子2git
手寫數字識別,在ubuntu中安裝部署好環境;github
代碼源自https://github.com/niektemme/tensorflow-mnist-predictexpress
建立訓練用python代碼apache
# Copyright 2016 Niek Temme. # Adapted form the on the MNIST biginners tutorial by Google. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A very simple MNIST classifier. Documentation at http://niektemme.com/ @@to do This script is based on the Tensoflow MNIST beginners tutorial See extensive documentation for the tutorial at https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html """ #import modules import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #import data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # init_op = tf.global_variables_initializer() 看版本,使用該行仍是使用下面那行 init_op = tf.initialize_all_variables() saver = tf.train.Saver() # Train the model and save the model to disk as a model.ckpt file # file is stored in the same directory as this python script is started """ The use of 'with tf.Session() as sess:' is taken from the Tensor flow documentation on on saving and restoring variables. https://www.tensorflow.org/versions/master/how_tos/variables/index.html """ with tf.Session() as sess: sess.run(init_op) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) save_path = saver.save(sess, "/tmp/model.ckpt") print ("Model saved in file: ", save_path)
測試代碼canvas
# Copyright 2016 Niek Temme. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Predict a handwritten integer (MNIST beginners). Script requires 1) saved model (model.ckpt file) in the same location as the script is run from. (requried a model created in the MNIST beginners tutorial) 2) one argument (png file location of a handwritten integer) Documentation at: http://niektemme.com/ @@to do """ #import modules import sys import tensorflow as tf from PIL import Image,ImageFilter def predictint(imvalue): """ This function returns the predicted integer. The imput is the pixel values from the imageprepare() function. """ # Define the model (same as when creating the model file) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) init_op = tf.global_variables_initializer() saver = tf.train.Saver() """ Load the model.ckpt file file is stored in the same directory as this python script is started Use the model to predict the integer. Integer is returend as list. Based on the documentatoin at https://www.tensorflow.org/versions/master/how_tos/variables/index.html """ with tf.Session() as sess: sess.run(init_op) saver.restore(sess, "/tmp/model.ckpt") #print ("Model restored.") prediction=tf.argmax(y,1) return prediction.eval(feed_dict={x: [imvalue]}, session=sess) def imageprepare(argv): """ This function returns the pixel values. The imput is a png file location. """ im = Image.open(argv).convert('L') width = float(im.size[0]) height = float(im.size[1]) newImage = Image.new('L', (28, 28), (255)) #creates white canvas of 28x28 pixels if width > height: #check which dimension is bigger #Width is bigger. Width becomes 20 pixels. nheight = int(round((20.0/width*height),0)) #resize height according to ratio width if (nheigth == 0): #rare case but minimum is 1 pixel nheigth = 1 # resize and sharpen img = im.resize((20,nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN) wtop = int(round(((28 - nheight)/2),0)) #caculate horizontal pozition newImage.paste(img, (4, wtop)) #paste resized image on white canvas else: #Height is bigger. Heigth becomes 20 pixels. nwidth = int(round((20.0/height*width),0)) #resize width according to ratio height if (nwidth == 0): #rare case but minimum is 1 pixel nwidth = 1 # resize and sharpen img = im.resize((nwidth,20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN) wleft = int(round(((28 - nwidth)/2),0)) #caculate vertical pozition newImage.paste(img, (wleft, 4)) #paste resized image on white canvas #newImage.save("sample.png") tv = list(newImage.getdata()) #get pixel values #normalize pixels to 0 and 1. 0 is pure white, 1 is pure black. tva = [ (255-x)*1.0/255.0 for x in tv] return tva #print(tva) def main(argv): """ Main function. """ imvalue = imageprepare(argv) predint = predictint(imvalue) print (predint[0]) #first value in list if __name__ == "__main__": main(sys.argv[1])
運行結果:ubuntu
矩陣-線性代數-http://www2.edu-edu.com.cn/lesson_crs78/self/j_0022/soft/ch0605.htmlbash
這本書不錯:超智能體https://yjango.gitbooks.io/superorganism/content/dai_ma_yan_shi_2.html