本文爲PAT甲級分類彙編系列文章。html
圖,就是層序遍歷和Dijkstra這一套,#include<queue> 是必須的。node
題號 | 標題 | 分數 | 大意 | 時間 |
1072 | Gas Station | 30 | 最短距離最大,距離不超限 | 200ms |
1076 | Forwards on Weibo | 30 | 必定層數的轉發計數 | 3000ms |
1079 | Total Sales of Supply Chain | 25 | 計算供應鏈總銷售額 | 250ms |
1087 | All Roads Lead to Rome | 30 | 複雜權重的最短路徑問題 | 200ms |
1090 | Highest Price in Supply Chain | 25 | 供應鏈最高價格 | 200ms |
1091 | Acute Stroke | 30 | 超過閾值的空間體積之和 | 600ms |
圖這一類題的分值都比較大,由於代碼量大,同時時間要麼短要麼長,不是標準的400ms。至於3000ms的1076,是一道簡單題,應該是出題老師一不當心多打了一個0。ios
30分題確定要作,此次就只作4道30分題:107二、107六、1087和1091。算法
1072:app
這道題的輸入數據是很典型的,算法以Dijkstra爲核心,以後再加上一點最小距離、範圍、平均距離等簡單的東西,不難。spa
不知是第幾回寫Dijkstra了,每次實現都不太同樣。以前寫過一篇Dijkstra算法與堆,如今看來,算法都不是很好。這一次通過深思熟慮後,我將下面這種寫法固定下來:code
1 #include <iostream> 2 #include <iomanip> 3 #include <sstream> 4 #include <vector> 5 #include <queue> 6 #include <limits> 7 8 struct Road 9 { 10 Road(int dest, int dist) 11 : dest(dest), dist(dist) { } 12 int dest; 13 int dist; 14 }; 15 16 struct Node 17 { 18 int dist = std::numeric_limits<int>::max(); 19 std::vector<Road> roads; 20 }; 21 22 struct Coll 23 { 24 Coll(int index, int dist) 25 : index(index), dist(dist) { } 26 int index; 27 int dist; 28 }; 29 30 struct Comp 31 { 32 static void init(std::vector<Node>& _nodes) 33 { 34 nodes = &_nodes; 35 } 36 static std::vector<Node>* nodes; 37 bool operator()(Coll i, Coll j) 38 { 39 return (*nodes)[i.index].dist > (*nodes)[j.index].dist; 40 } 41 }; 42 43 std::vector<Node>* Comp::nodes = nullptr; 44 45 int get_node(int _offset) 46 { 47 std::string s; 48 std::stringstream ss; 49 std::cin >> s; 50 ss << s; 51 if (s[0] == 'G') 52 { 53 ss.get(); 54 int i; 55 ss >> i; 56 --i; 57 i += _offset; 58 return i; 59 } 60 else 61 { 62 int i; 63 ss >> i; 64 --i; 65 return i; 66 } 67 } 68 69 int main() 70 { 71 int num_house, num_station, num_road, range; 72 std::cin >> num_house >> num_station >> num_road >> range; 73 std::vector<Node> nodes(num_house + num_station); 74 Comp::init(nodes); 75 for (int i = 0; i != num_road; ++i) 76 { 77 auto n0 = get_node(num_house), n1 = get_node(num_house); 78 int dist; 79 std::cin >> dist; 80 nodes[n0].roads.emplace_back(n1, dist); 81 nodes[n1].roads.emplace_back(n0, dist); 82 } 83 int best = -1; 84 int minimum = 0; 85 int total = std::numeric_limits<int>::max(); 86 auto house_begin = nodes.begin(); 87 auto house_end = nodes.begin() + num_house; 88 auto station_begin = nodes.begin() + num_house; 89 auto station_end = nodes.end(); 90 for (auto station = station_begin; station != station_end; ++station) 91 { 92 std::priority_queue<Coll, std::vector<Coll>, Comp> queue; 93 for (auto& node : nodes) 94 node.dist = std::numeric_limits<int>::max(); 95 station->dist = 0; 96 queue.emplace(station - nodes.begin(), 0); 97 while (!queue.empty()) 98 { 99 auto coll = queue.top(); 100 queue.pop(); 101 auto& node = nodes[coll.index]; 102 if (node.dist != coll.dist) 103 continue; 104 for (const auto& r : node.roads) 105 { 106 if (node.dist + r.dist < nodes[r.dest].dist) 107 { 108 nodes[r.dest].dist = node.dist + r.dist; 109 queue.emplace(r.dest, nodes[r.dest].dist); 110 } 111 } 112 } 113 int m = std::numeric_limits<int>::max(); 114 int t = 0; 115 bool bad = false; 116 for (auto house = house_begin; house != house_end; ++house) 117 { 118 if (house->dist > range) 119 bad = true; 120 t += house->dist; 121 if (house->dist < m) 122 m = house->dist; 123 } 124 if (bad) 125 continue; 126 if (m > minimum) 127 { 128 minimum = m; 129 best = station - nodes.begin(); 130 total = t; 131 } 132 else if (m == minimum && t < total) 133 { 134 best = station - nodes.begin(); 135 total = t; 136 } 137 } 138 if (best == -1) 139 { 140 std::cout << "No Solution"; 141 return 0; 142 } 143 best = best - num_house + 1; 144 std::cout << 'G' << best << std::endl; 145 std::cout.setf(std::ios::fixed); 146 std::cout << std::setprecision(1); 147 std::cout << (double)minimum << ' ' << (double)total / num_house; 148 }
Dijkstra算法的時間複雜度關鍵取決於「找到距離已收集頂點最近的頂點」這步操做的複雜度。線性確定是很差的,用優先隊列是更好的方法。然而,當你把一個頂點加入到隊列中之後,在它彈出以前,這個頂點的距離可能變得更近,即會改變它在堆中應該放的位置,爲此須要重排,這樣時間複雜度就不划算了。個人新方法是,在優先隊列中存儲結構體,包括頂點下標與插入優先隊列時它的距離。彈出時,將這個距離與頂點對象中維護的距離相比較,若是不相等,說明這個彈出已通過時了,只是以前受限於結構沒法刪除,但如今能夠忽略。因爲優先隊列以結構體中的距離爲鍵值,此頂點在以前確定已經被處理過了,因此能夠名正言順地忽略它。這樣就能夠不須要排序、查找等亂七八糟操做,同時頂點對象中也再也不須要表示是否已收集的變量了。htm
1087:對象
在Dijkstra算法的基礎上,這道題主要增長了對考慮相等狀況的要求。在cost同爲最小的狀況下,看第二鍵值happiness,在後者同爲最大的狀況下,選擇更大的平均happiness,也就是看路徑長度哪一個更短。因爲最優的選擇條件依賴於整條路徑,不能由已收集的部分得出,所以必須維護全部可能的路徑,跟以前PBMC的題相似,我記得那道題卡了我很久。blog
維護路徑的過程當中,若是出現相等長度的狀況(這道題中是cost),路徑要合併;若是有更短路徑,就不要以前維護的路徑,而從當前處理的節點的路徑生成。
1 #include <iostream> 2 #include <string> 3 #include <vector> 4 #include <queue> 5 #include <map> 6 #include <limits> 7 8 struct Route 9 { 10 Route() = default; 11 Route(int dest, int dist) 12 : dest(dest), dist(dist) { } 13 int dest; 14 int dist; 15 }; 16 17 struct City 18 { 19 std::string name; 20 std::vector<Route> routes; 21 int happiness; 22 int dist = std::numeric_limits<int>::max(); 23 std::vector<std::vector<int>> paths; 24 }; 25 26 struct Collect 27 { 28 Collect(int dest, int dist) 29 : dest(dest), dist(dist) { } 30 int dest; 31 int dist; 32 }; 33 34 struct Comparator 35 { 36 static void init(std::vector<City>& _cities) 37 { 38 cities = &_cities; 39 } 40 static std::vector<City>* cities; 41 bool operator()(const Collect& lhs, const Collect& rhs) 42 { 43 return (*cities)[lhs.dest].dist > (*cities)[rhs.dest].dist; 44 } 45 }; 46 47 std::vector<City>* Comparator::cities = nullptr; 48 49 int main() 50 { 51 int num_cities, num_routes; 52 std::cin >> num_cities >> num_routes; 53 std::vector<City> cities(num_cities); 54 std::cin >> cities[0].name; 55 std::map<std::string, int> city_map; 56 for (int i = 1; i != num_cities; ++i) 57 { 58 std::cin >> cities[i].name; 59 std::cin >> cities[i].happiness; 60 city_map[cities[i].name] = i; 61 } 62 for (int i = 0; i != num_routes; ++i) 63 { 64 std::string n0, n1; 65 std::cin >> n0 >> n1; 66 auto i0 = city_map[n0], i1 = city_map[n1]; 67 int dist; 68 std::cin >> dist; 69 cities[i0].routes.emplace_back(i1, dist); 70 cities[i1].routes.emplace_back(i0, dist); 71 } 72 Comparator::init(cities); 73 cities[0].dist = 0; 74 cities[0].paths.resize(1); 75 std::priority_queue<Collect, std::vector<Collect>, Comparator> queue; 76 queue.emplace(0, 0); 77 while (!queue.empty()) 78 { 79 auto col = queue.top(); 80 queue.pop(); 81 auto& city = cities[col.dest]; 82 if (city.name == "ROM") 83 break; 84 if (city.dist != col.dist) 85 continue; 86 for (const auto& r : city.routes) 87 { 88 auto& target = cities[r.dest]; 89 if (city.dist + r.dist < target.dist) 90 { 91 target.dist = city.dist + r.dist; 92 target.paths = city.paths; 93 for (auto& p : target.paths) 94 p.push_back(col.dest); 95 queue.emplace(r.dest, target.dist); 96 } 97 else if (city.dist + r.dist == target.dist) 98 { 99 for (auto p : city.paths) 100 { 101 p.push_back(col.dest); 102 target.paths.push_back(std::move(p)); 103 } 104 } 105 } 106 } 107 auto& rome = cities[city_map["ROM"]]; 108 std::cout << rome.paths.size() << ' ' << rome.dist << ' '; 109 int happiness = 0; 110 int count = 0; 111 int recommended; 112 for (auto p = rome.paths.begin(); p != rome.paths.end(); ++p) 113 { 114 int h = 0; 115 for (int i : *p) 116 h += cities[i].happiness; 117 if (h > happiness) 118 { 119 happiness = h; 120 count = p->size(); 121 recommended = p - rome.paths.begin(); 122 } 123 else if (h == happiness && p->size() < count) 124 { 125 count = p->size(); 126 recommended = p - rome.paths.begin(); 127 } 128 } 129 happiness += rome.happiness; 130 std::cout << happiness << ' ' << happiness / (count ? count : 1) << std::endl; 131 for (int i : rome.paths[recommended]) 132 std::cout << cities[i].name << "->"; 133 std::cout << "ROM" << std::endl; 134 }
第一次提交的時候,一個case出現浮點錯誤。我沒有用過浮點,那就是除以0的錯誤。這個case確定是一種邊界狀況,可是我不怎麼清楚路徑長度是怎麼爲0的。也許是出發點就是終點吧。
1076:
3000ms真的嚇到我了,啥題須要3000ms呢?懷着忐忑的心情我作完了這道題,跑出來140ms,並且我用的是C++的輸入輸出。所以我有理由相信這道題本應是300ms。
這裏的圖是沒有權重的,所以就是一個簡單的層序遍歷,只是要維護層數並判斷。把層數放入對象,像Dijkstra算法中維護距離同樣,在處理一個對象時把後繼節點的層數設爲此對象的層數加1就能夠了。
1 #include <iostream> 2 #include <vector> 3 #include <queue> 4 5 struct User 6 { 7 std::vector<int> fans; 8 int layer; 9 bool forward; 10 }; 11 12 int main() 13 { 14 int num_user, layer; 15 std::cin >> num_user >> layer; 16 std::vector<User> users(num_user); 17 for (int i = 0; i != num_user; ++i) 18 { 19 auto& u = users[i]; 20 int count; 21 std::cin >> count; 22 for (int j = 0; j != count; ++j) 23 { 24 int t; 25 std::cin >> t; 26 --t; 27 users[t].fans.push_back(i); 28 } 29 } 30 int num_query; 31 std::cin >> num_query; 32 for (int i = 0; i != num_query; ++i) 33 { 34 int t; 35 std::cin >> t; 36 --t; 37 for (auto& u : users) 38 u.layer = 0, u.forward = false; 39 users[t].forward = true; 40 int count = 0; 41 std::queue<int> queue; 42 queue.push(t); 43 while (!queue.empty()) 44 { 45 auto index = queue.front(); 46 auto& user = users[index]; 47 queue.pop(); 48 for (int i : user.fans) 49 { 50 auto& fan = users[i]; 51 if (!fan.forward) 52 { 53 //std::cout << i << ' '; 54 fan.forward = true; 55 ++count; 56 fan.layer = user.layer + 1; 57 if (fan.layer < layer) 58 queue.push(i); 59 } 60 } 61 } 62 std::cout << count << std::endl; 63 } 64 }
算法很正確,可是樣例就錯了。把轉發的用戶打印出來看,我發現最初發微博的用戶做爲本身的粉絲的粉絲……的粉絲,把本身的微博轉發了一下。因而我就在初始條件裏面把這個用戶設置爲已轉發,但不計數。要是樣例輸入不挖這個坑,我可能要好久才能發現這個問題。
1091:
給定立體圖像,計算每一塊的體積並選擇達到閾值的進行累加。
對於一個有效單位,能夠用像層序遍歷同樣的算法把與之連通的單位都計算進來,同時將它們都標記爲以收集。碰到下一個未收集的有效單位,再用一樣的方法計算,直到遍歷完。
實現中還用到了昨天提到的內部迭代器,用統一的接口包裝輸入和計算兩個看似絕不相關的操做。
1 #include <iostream> 2 #include <cstdio> 3 #include <queue> 4 5 struct Unit 6 { 7 bool bad; 8 bool collected = false; 9 }; 10 11 struct Point 12 { 13 Point() 14 : Point(0, 0, 0) { } 15 Point(int x, int y, int z) 16 : x(x), y(y), z(z) { } 17 int x; 18 int y; 19 int z; 20 }; 21 22 class Brain 23 { 24 public: 25 Brain(Point p) 26 : size(p) 27 { 28 data = new Unit[size.x * size.y * size.z]; 29 } 30 ~Brain() 31 { 32 delete[] data; 33 } 34 Brain(const Brain&) = delete; 35 Brain(Brain&&) = delete; 36 Brain& operator=(const Brain&) = delete; 37 Brain& operator=(Brain&&) = delete; 38 Unit& operator[](const Point& p) 39 { 40 return data[point_to_int(p)]; 41 } 42 template <typename F> 43 void for_each(F _functor) 44 { 45 Point p; 46 for (p.x = 0; p.x != size.x; ++p.x) 47 for (p.y = 0; p.y != size.y; ++p.y) 48 for (p.z = 0; p.z != size.z; ++p.z) 49 _functor(p, operator[](p)); 50 } 51 Point size; 52 private: 53 Unit* data; 54 int point_to_int(const Point& p) 55 { 56 return (p.x * size.y + p.y) * size.z + p.z; 57 } 58 }; 59 60 void push_if_valid(std::queue<Point>& queue, Brain& brain, const Point& point) 61 { 62 if (point.x >= 0 && point.x < brain.size.x && 63 point.y >= 0 && point.y < brain.size.y && 64 point.z >= 0 && point.z < brain.size.z && 65 brain[point].bad && 66 !brain[point].collected) 67 queue.emplace(point); 68 } 69 70 void push_if_valid(std::queue<Point>& queue, Brain& brain, int x, int y, int z) 71 { 72 if (x >= 0 && x < brain.size.x && 73 y >= 0 && y < brain.size.y && 74 z >= 0 && z < brain.size.z) 75 { 76 Point p(x, y, z); 77 auto& unit = brain[p]; 78 if (unit.bad && !unit.collected) 79 queue.emplace(std::move(p)); 80 } 81 82 } 83 84 int main() 85 { 86 int size_x, size_y, size_z, threshold; 87 std::cin >> size_y >> size_z >> size_x >> threshold; 88 Point size(size_x, size_y, size_z); 89 Brain brain(size); 90 brain.for_each([](const Point& p, Unit& u) { 91 //std::cin >> u.bad; 92 int t; 93 std::scanf("%d", &t); 94 u.bad = t; 95 }); 96 int total = 0; 97 brain.for_each([=, &brain, &total](const Point& p, Unit& u) { 98 if (!u.bad || u.collected) 99 return; 100 int size = 0; 101 std::queue<Point> queue; 102 queue.push(p); 103 while (!queue.empty()) 104 { 105 auto p = queue.front(); 106 queue.pop(); 107 auto& unit = brain[p]; 108 if (!unit.bad || unit.collected) 109 continue; 110 unit.collected = true; 111 ++size; 112 push_if_valid(queue, brain, p.x - 1, p.y, p.z); 113 push_if_valid(queue, brain, p.x + 1, p.y, p.z); 114 push_if_valid(queue, brain, p.x, p.y - 1, p.z); 115 push_if_valid(queue, brain, p.x, p.y + 1, p.z); 116 push_if_valid(queue, brain, p.x, p.y, p.z - 1); 117 push_if_valid(queue, brain, p.x, p.y, p.z + 1); 118 } 119 if (size >= threshold) 120 total += size; 121 }); 122 std::cout << total; 123 }
然而,這道題有個坑,在於輸入數據第一行中3個維度的長度不是x、y、z的順序,而是y、z、x的順序。若是順序不對,那麼後面判斷連通也會錯誤。若是按x、y、z來處理,樣例數據的輸出會是28而不是26,除了那大片區域外的4個點連通起來了。