★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:爲敢(WeiGanTechnologies)
➤我的域名:https://www.zengqiang.org
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-wlyugsif-de.html
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
You are given a list of blocks, where blocks[i] = t
means that the i
-th block needs t
units of time to be built. A block can only be built by exactly one worker.node
A worker can either split into two workers (number of workers increases by one) or build a block then go home. Both decisions cost some time.git
The time cost of spliting one worker into two workers is given as an integer split
. Note that if two workers split at the same time, they split in parallel so the cost would be split
.github
Output the minimum time needed to build all blocks.api
Initially, there is only one worker.微信
Example 1:app
Input: blocks = [1], split = 1 Output: 1 Explanation: We use 1 worker to build 1 block in 1 time unit.
Example 2:ide
Input: blocks = [1,2], split = 5 Output: 7 Explanation: We split the worker into 2 workers in 5 time units then assign each of them to a block so the cost is 5 + max(1, 2) = 7.
Example 3:ui
Input: blocks = [1,2,3], split = 1 Output: 4 Explanation: Split 1 worker into 2, then assign the first worker to the last block and split the second worker into 2. Then, use the two unassigned workers to build the first two blocks. The cost is 1 + max(3, 1 + max(1, 2)) = 4.
Note:spa
1 <= blocks.length <= 1000
1 <= blocks[i] <= 10^5
1 <= split <= 100
你是個城市規劃工做者,手裏負責管轄一系列的街區。在這個街區列表中 blocks[i] = t
意味着第 i
個街區須要 t
個單位的時間來建造。
因爲一個街區只能由一個工人來完成建造。
因此,一個工人要麼須要再召喚一個工人(工人數增長 1);要麼建造完一個街區後回家。這兩個決定都須要花費必定的時間。
一個工人再召喚一個工人所花費的時間由整數 split
給出。
注意:若是兩個工人同時召喚別的工人,那麼他們的行爲是並行的,因此時間花費仍然是 split
。
最開始的時候只有 一個 工人,請你最後輸出建造完全部街區所須要的最少時間。
示例 1:
輸入:blocks = [1], split = 1 輸出:1 解釋:咱們使用 1 個工人在 1 個時間單位內來建完 1 個街區。
示例 2:
輸入:blocks = [1,2], split = 5 輸出:7 解釋:咱們用 5 個時間單位將這個工人分裂爲 2 個工人,而後指派每一個工人分別去建造街區,從而時間花費爲 5 + max(1, 2) = 7
示例 3:
輸入:blocks = [1,2,3], split = 1 輸出:4 解釋: 將 1 個工人分裂爲 2 個工人,而後指派第一個工人去建造最後一個街區,並將第二個工人分裂爲 2 個工人。 而後,用這兩個未分派的工人分別去建造前兩個街區。 時間花費爲 1 + max(3, 1 + max(1, 2)) = 4
提示:
1 <= blocks.length <= 1000
1 <= blocks[i] <= 10^5
1 <= split <= 100
優先隊列
1 class Solution { 2 func minBuildTime(_ blocks: [Int], _ split: Int) -> Int { 3 var pq = PriorityQueue<Int> { $0 < $1 } 4 for v in blocks 5 { 6 pq.push(v) 7 } 8 while(pq.count >= 2) 9 { 10 let x:Int = pq.pop()! 11 let y:Int = pq.pop()! 12 pq.push(y + split) 13 } 14 return pq.pop() ?? 0 15 } 16 } 17 18 public struct PriorityQueue<T> { 19 fileprivate var heap: Heap<T> 20 public init(sort: @escaping (T, T) -> Bool) { 21 heap = Heap(sort: sort) 22 } 23 24 public var isEmpty: Bool { 25 return heap.isEmpty 26 } 27 28 public var count: Int { 29 return heap.count 30 } 31 32 public func peek() -> T? { 33 return heap.peek() 34 } 35 36 public mutating func push(_ element: T) { 37 heap.insert(element) 38 } 39 40 public mutating func pop() -> T? { 41 return heap.remove() 42 } 43 44 public mutating func changePriority(index i: Int, value: T) { 45 return heap.replace(index: i, value: value) 46 } 47 } 48 49 extension PriorityQueue where T: Equatable { 50 public func index(of element: T) -> Int? { 51 return heap.index(of: element) 52 } 53 } 54 55 public struct Heap<T> { 56 var nodes = [T]() 57 58 private var orderCriteria: (T, T) -> Bool 59 60 public init(sort: @escaping (T, T) -> Bool) { 61 self.orderCriteria = sort 62 } 63 64 public init(array: [T], sort: @escaping (T, T) -> Bool) { 65 self.orderCriteria = sort 66 configureHeap(from: array) 67 } 68 69 private mutating func configureHeap(from array: [T]) { 70 nodes = array 71 for i in stride(from: (nodes.count/2-1), through: 0, by: -1) { 72 shiftDown(i) 73 } 74 } 75 76 public var isEmpty: Bool { 77 return nodes.isEmpty 78 } 79 80 public var count: Int { 81 return nodes.count 82 } 83 84 @inline(__always) internal func parentIndex(ofIndex i: Int) -> Int { 85 return (i - 1) / 2 86 } 87 88 @inline(__always) internal func leftChildIndex(ofIndex i: Int) -> Int { 89 return 2*i + 1 90 } 91 92 @inline(__always) internal func rightChildIndex(ofIndex i: Int) -> Int { 93 return 2*i + 2 94 } 95 96 public func peek() -> T? { 97 return nodes.first 98 } 99 100 public mutating func insert(_ value: T) { 101 nodes.append(value) 102 shiftUp(nodes.count - 1) 103 } 104 105 public mutating func insert<S: Sequence>(_ sequence: S) where S.Iterator.Element == T { 106 for value in sequence { 107 insert(value) 108 } 109 } 110 111 public mutating func replace(index i: Int, value: T) { 112 guard i < nodes.count else { return } 113 114 remove(at: i) 115 insert(value) 116 } 117 118 @discardableResult public mutating func remove() -> T? { 119 guard !nodes.isEmpty else { return nil } 120 121 if nodes.count == 1 { 122 return nodes.removeLast() 123 } else { 124 let value = nodes[0] 125 nodes[0] = nodes.removeLast() 126 shiftDown(0) 127 return value 128 } 129 } 130 131 @discardableResult public mutating func remove(at index: Int) -> T? { 132 guard index < nodes.count else { return nil } 133 134 let size = nodes.count - 1 135 if index != size { 136 nodes.swapAt(index, size) 137 shiftDown(from: index, until: size) 138 shiftUp(index) 139 } 140 return nodes.removeLast() 141 } 142 143 internal mutating func shiftUp(_ index: Int) { 144 var childIndex = index 145 let child = nodes[childIndex] 146 var parentIndex = self.parentIndex(ofIndex: childIndex) 147 148 while childIndex > 0 && orderCriteria(child, nodes[parentIndex]) { 149 nodes[childIndex] = nodes[parentIndex] 150 childIndex = parentIndex 151 parentIndex = self.parentIndex(ofIndex: childIndex) 152 } 153 154 nodes[childIndex] = child 155 } 156 157 internal mutating func shiftDown(from index: Int, until endIndex: Int) { 158 let leftChildIndex = self.leftChildIndex(ofIndex: index) 159 let rightChildIndex = leftChildIndex + 1 160 161 var first = index 162 if leftChildIndex < endIndex && orderCriteria(nodes[leftChildIndex], nodes[first]) { 163 first = leftChildIndex 164 } 165 if rightChildIndex < endIndex && orderCriteria(nodes[rightChildIndex], nodes[first]) { 166 first = rightChildIndex 167 } 168 if first == index { return } 169 170 nodes.swapAt(index, first) 171 shiftDown(from: first, until: endIndex) 172 } 173 174 internal mutating func shiftDown(_ index: Int) { 175 shiftDown(from: index, until: nodes.count) 176 } 177 178 } 179 180 extension Heap where T: Equatable { 181 182 public func index(of node: T) -> Int? { 183 return nodes.firstIndex(where: { $0 == node }) 184 } 185 186 @discardableResult public mutating func remove(node: T) -> T? { 187 if let index = index(of: node) { 188 return remove(at: index) 189 } 190 return nil 191 } 192 }